Skip to main content
Log in

Appell systems on Lie groups

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Using the probabilistic interpretation of Appell polynomials as systems of moments, we show how to define them in the noncommutative case. The method is based on certain infinite-dimensional representations of local Lie groups. For processes, limit theorems play an essential role in the construction. Polynomial matrix representations of convolution semigroups are a principal feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avram, F., and Taqqu, M. S. (1987). Noncentral limit theorems and Appell polynomials,Ann. Prob. 15 767–775.

    Google Scholar 

  2. Boas, R. P., and Buck, R. C. (1958).Polynomial Expansions of Analytic Functions, Springer-Verlag, Berlin.

    Google Scholar 

  3. Crepel, P., and Raugi, A. (1978). Théorème central limite sur les groupes nilpotents,Ann. Inst. Henri Poincaré XIV, 145–164.

    Google Scholar 

  4. Feinsilver, Ph., and Schott, R. (1989). Operators, stochastic processes, and Lie groups,Lecture Notes in Mathematics, Vol. 1379, pp. 75–85, Springer-Verlag, Berlin.

    Google Scholar 

  5. Feinsilver, Ph., and R. Schott, (1989). An operator approach to processes on Lie groups.Lecture Notes in Mathematics, Vol. 1391, pp. 59–65, Springer-Verlag, Berlin.

    Google Scholar 

  6. Feinsilver, Ph., and Schott, R. (1990). Special functions and infinite-dimensional representations of Lie groups.Math. Z. 203, 173–191.

    Google Scholar 

  7. Feinsilver, Ph., and Schott, R. (1991). Appell systems on Lie groups II: Theory of special functions. Manuscript in preparation.

  8. Giraitis, L., (1985). Central limit theorem for functionals of linear processes.Lietuvos Matematikos Rinkinys XXV, 43–57.

    Google Scholar 

  9. Giraitis, L., and Surgailis, D. (1985). CLT and other limit theorems for functionals of Gaussian processes.Z. Wahr. 70, 191–212.

    Google Scholar 

  10. Giraitis, L., and Surgailis, D. (1986). Multivariate Appell polynomials and the central limit theorem, inDependence in Probability and Statistics, E. Eberlein and M. S. Taqqu (eds.), pp. 21–71, Birkhäuser, Boston.

    Google Scholar 

  11. Hakim-Dowek, M., and Lépingle, D. (1986). L'Exponentielle stochastique des groupes de Lie,Lecture Notes in Mathematics, Vol. 1204, pp. 352–374, Springer-Verlag, Berlin.

    Google Scholar 

  12. Hunt, G. (1956). Semigroups of measures on Lie groups.Trans. A.M.S. 81 264–293.

    Google Scholar 

  13. Karasev, M. V., and Maslov, V. P. (1990). Non-Lie permutation relations.Russian Math. Surveys XXXXV, 51–98.

    Google Scholar 

  14. McKean, H. P. (1969).Stochastic Integrals, Academic Press, New York.

    Google Scholar 

  15. Rainville, E. (1967).Special Functions, MacMillan, New York.

    Google Scholar 

  16. Raugi, A. (1979). Théorème de la limite centrale pour un produit semi-direct d'un groupe de Lie résoluble simplement connexe de type rigide par un groupe compact.Lecture Notes in Mathematics, Vol. 706, pp. 257–324, Springer-Verlag, Berlin.

    Google Scholar 

  17. Siebert, E. (1984). Holomorphic convolution semigroups on topological groups.Lecture Notes in Mathematics, Vol. 1064, pp. 421–449, Springer-Verlag, Berlin.

    Google Scholar 

  18. Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank,Z. Wahr. 50, 53–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinsilver, P., Schott, R. Appell systems on Lie groups. J Theor Probab 5, 251–281 (1992). https://doi.org/10.1007/BF01046735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046735

Key Words

Navigation