Skip to main content
Log in

An infinite-dimensional law of large numbers in Cesaro's sense

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let (X k) k≥0 be a sequence of independent copies of a random variableX taking its values in a real separable Banach space (B, ¦ ¦). For every real number β>−1 one defines the following coefficients:

$$A_0^\beta = 1, A_1^\beta = \beta + 1,..., A_k^\beta = (\beta + 1) \cdots (\beta + k)/k!,...$$

It is shown that for all α∈]0, 1[ the sequenceV n =(1/A α n )∑0⩽k⩽n A α−1 n−k X k converges almost surely toE(X) if and only if ‖X1/α is integrable. This extends results obtained earlier by several authors for scalar-valued random variables: Lorentz (case 1/2<α<1), Chow and Lai (case 0<α<1/2), Déniel and Derriennic (case α=1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Acosta, A. (1980). Strong exponential integrability of sums of independent B-valued random vectors.Prob. Math. Stat. 1, 133–150.

    Google Scholar 

  2. de Acosta, A. (1981). Inequalities forB-valued random vectors with applications to the strong law of large numbers.Ann. Prob. 9, 157–161.

    Google Scholar 

  3. Alt, J. C. (1989). Stabilité de sommes pondérées de variables aléatoires vectorielles.J. Multivariate Anal. 29, 137–154.

    Google Scholar 

  4. Chow, Y. S., and Lai, T. L. (1973). Limiting behavior of weighted sums of independent random variables.Ann. Prob. 1, 810–824.

    Google Scholar 

  5. Chow, Y. S., and Teicher, H. (1978).Probability Theory. Springer, Berlin.

    Google Scholar 

  6. Déniel, Y., and Derriennic, Y. (1988). Sur la convergence presque sûre, au sens de Cesaro d'ordre α, 0<α<1, de variables aléatoires indépendantes et identiquement distribuées.Prob. Theory Rel. Fields 79, 629–636.

    Google Scholar 

  7. Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables.Studia Math. 52, 159–186.

    Google Scholar 

  8. Jain, N. C. (1975). Tail probabilities for sums of independent Banach space valued random variables.Z. Wahrsch. verw. Gebiete 33, 155–166.

    Google Scholar 

  9. Kuelbs, J., and Zinn, J. (1979). Some stability results for vector valued random variables.Ann. Prob. 7, 75–84.

    Google Scholar 

  10. Laha, R. G., and Rohatgi, V. K. (1979).Probability Theory. Wiley Sons, New York.

    Google Scholar 

  11. Lorentz, G. G. (1955). Borel and Banach properties of methods of summation.Duke Math. J. 22, 129–141.

    Google Scholar 

  12. Mourier, E. (1953). Les éléments aléatoires dans un espace de Banach.Ann. Inst. H. Poincaré 13, 159–244.

    Google Scholar 

  13. Stout, W. F. (1974). Almost sure convergence. Academic, New York.

    Google Scholar 

  14. Zygmund, A. (1935).Trigonometrical series. Monografje Matematyczne, Warsaw.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinkel, B. An infinite-dimensional law of large numbers in Cesaro's sense. J Theor Probab 3, 533–546 (1990). https://doi.org/10.1007/BF01046094

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046094

Key Words

Navigation