Skip to main content
Log in

Neue Siderophore des Pyoverdin-Typs ausPseudomonas fluorescens

New pyoverdin type siderophores fromPseudomonas fluorescens

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript


The structure of four new pyoverdins (Pf12-IA, -IIA, -IB und IIB) isolated from the culture medium ofPseudomonas fluorescens 12 was elucidated by combination of spectroscopic methods and degradation reactions. The pyoverdins comprise (1S)-5-amino-2,3-dihydro-8,9-dihydroxy-1H-pyrimido[1,2-a]quinoline-1-carboxylic acid whose amino group carries a 3-carboxypropanoyl-(IA), succinamoyl- (IIA), 4-carboxy-4-oxobutanoyl- (IB) or L-4-amino-4-carboxybutanoylresidue (II B) and whose carboxyl group is bound amidically to the N-terminus of D-Ser-L-Lys-Gly-

. According to the short-hand-nomenclature suggested in [2, 3] the pyoverdins may be described as pyoverdin-Q-sKGO′sSGK*o′ES*-SUC(IA), pyoverdin-Q-sKGO′sSGK*o′-ES*-SUCA (IIA), pyoverdin-Q-sKGO′sSGK*o′ES*-KGL (IB) and pyoverdin-Q-sKGO′sSGK*o′ES*-GLU (IIB). The pyoverdins described here possess the most complex structure encountered so far as their peptide part comprises eleven amino acids and the cyclo-tetrapeptide substructure. In addition, they are of special interest as for the first time glutamic acid could be identified as a chromophore side chain which is the key compound for the citric acid cycle to which belong all dicarboxylic acids found so far in pyoverdins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others





Chromophor1 a


Chromophor1 b








Fast Atom Bombardment (PI=positive Ionen)



(CHO, HO)Orn:





Reversed-Phase High Performance Liquid Chromatography


α-Ketoglutarsäure bzw. 4-Carboxy-4-oxobutanoyl-Rest

R t :



Bernsteinsäure bzw. 3-Carboxypropanoyl-Rest










  1. Teil XLVI der Reihe “Bakterieninhaltsstoffe”. Für Teil XLV s. Taraz K., Tappe R., Schröder H., Hohlneicher U., Gwose I., Budzikiewicz H., Mohn G., Lefèvre J. F. (1991) Z. Naturforsch.46c: 527

    Google Scholar 

  2. Briskot G., Taraz K., Budzikiewicz H. (1989) Liebigs Ann. Chem.: 375

  3. Mohn G., Taraz K., Budzikiewicz H. (1990) Z. Naturforsch.45b: 1437

    Google Scholar 

  4. Demange P., Wendenbaum S., Bateman A., Dell A., Abdallah M. A. (1987) Bacterial Siderophores: Structure and Physicochemical Properties of Pyoverdins and Related Compounds. In: Winkelmann G., van der Helm D., Neilands J. B. (ed.) Iron Transport in Microbes, Plants and Animals. VCH, Weinheim, S. 167

    Google Scholar 

  5. Demange P., Bateman A., Mertz C., Dell A., Piemont Y., Abdallah M. A. (1990) Biochemistry29: 11041

    Google Scholar 

  6. Poppe K., Taraz K., Budzikiewicz H. (1987) Tetrahedron43: 2261

    Google Scholar 

  7. Teintze M., Hossain M. B., Barnes C. L., Leong J., van der Helm D. (1981) Biochemistry20: 6447;

    Google Scholar 

  8. Teintze M., Leong J. (1981) Biochemistry20: 6457

    Google Scholar 

  9. Yang C. C., Leong J. (1984) Biochemistry23: 3534

    Google Scholar 

  10. Buyer S. J., Wright J. M., Leong J. (1986) Biochemistry25: 5492

    Google Scholar 

  11. van der Hofstad G. A. J. M., Marugg J. D., Verjans G. M. G. M., Weisbeek P. J. (1986) Charakterization and Structural Analysis of the Siderophore Produced by the PGPRPseudomonas putida Strain WCS 358. In: Swinburn T. R. (ed.). Iron, Siderophores and Plant Diseases. Plenum Press, New York, S. 71

    Google Scholar 

  12. Pesmark M., Frejd T., Mattiasson B. (1990) Biochemistry29: 7348

    Google Scholar 

  13. Hohnagel D., Meyer J. M. (1988) J. Bacteriol.170: 4865

    Google Scholar 

  14. Schäfer H., Taraz K., Budzikiewicz H., Z. Naturforsch. (1991)46c: 398

    Google Scholar 

  15. Briskot G., Taraz K., Budzikiewicz H. (1986) Z. Naturforsch.41c: 497

    Google Scholar 

  16. Meyer J. M., Abdallah M. A. (1978) J. Gen. Microbiol.107: 319

    Google Scholar 

  17. Offort R. E. (1966) Nature211: 591

    Google Scholar 

  18. Wendenbaum S., Demange P., Dell A., Meyer J. M., Abdallah M. A. (1983) Tetrahedron Lett.24: 4877

    Google Scholar 

  19. Leimer K. L., Rice R. H., Gehrke C. W. (1977) J. Chromatogr.141: 121

    Google Scholar 

  20. Copper A. J. L., Ginos J. Z., Meister A. (1983) Chem. Rev.83: 321

    Google Scholar 

  21. Anderegg G. A., L'Epplatenier F., Schwarzenbach G. (1963) Helv. Chim. Acta46: 1409

    Google Scholar 

  22. Briskot G. (1988) Dissertation. Univ. Köln

  23. Wüthrich K. (1976) NMR in Biological Research: Peptides and Proteins. North-Holland, Amsterdam

    Google Scholar 

  24. Breitmaier E., Voelter W. (1987) Carbon-13 NMR Spectroscopy. VCH, Weinheim

    Google Scholar 

  25. Bundi A., Wüthrich K. (1979) Biopolymers18: 285

    Google Scholar 

  26. Rabenstein D. L., Sayer T. L. (1976) J. Magn. Res.24: 27

    Google Scholar 

  27. Michels J., Benoni H., Briskot G., Lex J., Schmickler H., Taraz K., Budzikiewicz H., Korth H., Pulverer G., Z. Naturforsch. (im Druck)

  28. Taraz K., Seinsche D., Budzikiewicz H., (1991) Z. Naturforsch.46c: 522

    Google Scholar 

  29. Meister A. (1953) J. Biol. Chem.200: 571

    Google Scholar 

  30. Jen J., Knoche W. (1969) Ber. Bunsenges. Phys. Chem.73: 539

    Google Scholar 

  31. Copper A. J. L., Redfield A. G. (1975) J. Biol. Chem.250: 527

    Google Scholar 

  32. Otani T. T., Meister A. (1957) J. Biol. Chem.224: 137

    Google Scholar 

  33. Viswanathan T. S., Johnson R. E., Fisher H. E. (1982) Biochemistry21: 339

    Google Scholar 

  34. Demange P., Wendenbaum S., Linget C., Mertz C., Cung M. T., Dell A., Abdallah M. A. (1990) Biol. Metals3: 155

    Google Scholar 

  35. Hersh L. B. (1971) Biochemistry10: 2884

    Google Scholar 

  36. Mix H. (1961) Z. physiol. Chem.325: 106;

    Google Scholar 

  37. Mix H. (1961) Z. Physiol. Chem.323: 173;

    Google Scholar 

  38. Nakada H. J., Winehouse S. (1953) J. Biol. Chem.204: 831

    Google Scholar 

  39. Serjeaut E. P., Dempsey B. (1979) Ionisation Constants of Organic Acids in Aqueous Solution. Pergamon Press, Oxford

    Google Scholar 

  40. Kolasa T. (1983) Tetrahedron39: 1753

    Google Scholar 

  41. Keller-Schierlein W., Deér A. (1963) Helv. Chim. Acta46: 1907

    Google Scholar 

  42. Tapuhi Y., Schmidt D. E., Lindner W., Karger B. L. (1981) Anal. Biochem.115: 123

    Google Scholar 

  43. Bax A., Freeman R. (1981) J. Magn. Res.44: 542

    Google Scholar 

  44. Bodenhauser G., Freeman R. (1977) J. Magn. Res.28: 471

    Google Scholar 

  45. Biemann K., Martin S. A. (1988) Mass Spectrom. Rev.6: 1

    Google Scholar 

  46. Roepstorff P., Fohlmann J. (1984) Biomed. Mass Spectrom.11: 601

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisen, K., Taraz, K. & Budzikiewicz, H. Neue Siderophore des Pyoverdin-Typs ausPseudomonas fluorescens . Monatsh Chem 123, 151–178 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: