Skip to main content
Log in

Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin)

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Bone sialoprotein (BSP) is a prominent component of bone tissues that is expressed by differentiated osteoblastic cells. Affinity-purified antibodies to BSP were prepared and used in combination with biotin-conjugated peroxidase-labeled second antibodies to demonstrate the distribution of this protein in sections of demineralized foetal porcine tibia and calvarial bone. Staining for BSP was observed in the matrix of mineralized bone and also in the mineralized cartilage and associated cells of the epiphysis, but was not observed in the hypertrophic zone nor in any of the soft tissues including the periosteum. In comparison, SPP-1 (osteopontin) and SPARC (osteonectin), which are also major proteins in porcine bone, were observed in the cartilage as well as in the mineralized bone matrix, In addition, SPARC was also present in soft connective tissues. Although SPP-1 distribution was more restricted than SPARC, hypertrophic chondrocytes, periosteal cells and some stromal cells in the bone marrow spaces were stained in addition to osteoblastic cells. The variations in the distribution and cellular expression of BSP, SPARC and SPP-1 in bone and mineralizing cartilage indicate these proteins perform different functions in the formation and remodelling of mineralized connective tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, J., Schuppan, D., Benzian, H., Bals, T., Hahn, E. G., Cantaluppi, C. &Reichart, P. (1986) Immunohistochemical distribution of collagens types IV, V, and VI and of pro-collagens types I and III in human alveolar bone and dentine.J. Histochem. Cytochem. 34, 1417–29.

    PubMed  Google Scholar 

  • Bellanger, L. S. (1969) Osteocytic osteolysis.Calc. Tiss. Res. 4, 1–12.

    Google Scholar 

  • Boutilier, L., Stratis, M., Bailey, D., McGirr, D. &Wahid, S. (1989) A comparison of a simple two step immunoalkaline phosphatase technique with the peroxidase-antiperoxidase (PAP) and avidin biotin complex (ABC) technique.J. Histotechnology 12, 279–82.

    Google Scholar 

  • Copray, J. C. V. M., Johnson, P. M., Decker, J. D. &Hall, S. H. (1989) Presence of osteonectin/SPARC in mandibular condylar cartilage of the rat.J. Anat. 162, 43–51.

    PubMed  Google Scholar 

  • Domenicucci, C., Goldberg, H. A., Hofnann, T., Isenman, D., Wasi, S. &Sodek, J. (1988) Characterization of porcine osteonectin extracted from foetal porcine calvariae.Biochem. J. 253, 139–51.

    PubMed  Google Scholar 

  • Ecarot-Charrier, B., Bouchard, F. &Delloye, C. (1989) Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate.J. Biol. Chem. 264, 20049–53.

    PubMed  Google Scholar 

  • Fet, V., Dickinson, M. E. &Hogan, B. L. M. (1989) Localization of the mouse gene for secreted phosphoprotein 1 (SPP-1) (2ar, osteopontin, bone sialoprotein 1, 44-kDa bone phosphoprotein, tumour-secreted phosphoprotein) to chromosome 5 closely linked toRi (Rickettsia resistance).Genomics 5, 375–7.

    PubMed  Google Scholar 

  • Fisher, L. W. (1985) The nature of the proteoglycans of bone. InThe Chemistry and Biology of Mineralized Tissue (edited byButler, W. T.) pp. 188–96. Birmingham, AL: EBSCO Media Inc.

    Google Scholar 

  • Fisher, L. W., McBride, O. W., Termine, J. D. &Young, M. F. (1990) Human bone sialoprotein.J. Biol. Chem. 265, 2347–51.

    PubMed  Google Scholar 

  • Franzen, A. &Heinegard, D. (1984) Characterization of proteoglycans from the calcified matrix of bovine bone.Biochem. J. 224, 47–58.

    PubMed  Google Scholar 

  • Franzen, A., Oldberg, A. &Solursh, M. (1989) Possible recruitment of osteoblastic precursor cells from hypertrophic chondrocytes during initial osteogenesis in cartilaginous limbs of young rats.Matrix 9, 261–5.

    PubMed  Google Scholar 

  • Gerstenfeld, L. C., Gotoh, Y., McKee, M. D., Nanci, A., Landis, W. J. &Glimcher, M. J. (1990) Expression and ultrastructural immunolocalization of a major 66 kDa phosphoprotein synthesized by chicken ostoblasts during mineralizationin vitro.Anat. Rec. 228, 93–103.

    PubMed  Google Scholar 

  • Goldberg, H. A., Domenicucci, C., Pringle, G. A. &Sodek, J. (1988) Mineral-binding proteoglycans of fetal calvarial bone.J. Biol. Chem. 263, 12092–101.

    PubMed  Google Scholar 

  • Gore-Langton, R. E., Tung, P. S. &Fritz, I. B. (1983) The absence of specific interaction of Sertoli-cell secreted proteins with antibodies directed against H-Y antigen.Cell. 32, 289–301.

    PubMed  Google Scholar 

  • Hauschka, P. V. (1985) Osteocalcin and its functional domains. InThe Chemistry and Biology of Mineralized Tissue (edited byButler, W. T.) pp. 149–58. Birmingham, AL: Ebsco Media Inc.

    Google Scholar 

  • Holland, P., Harper, S., McVey, J. &Hogan, B. L. M. (1987)In vivo expression of mRNA for the Ca++ binding protein SPARC (osteonectin) revealed byin situ hybridization.J. Cell. Biol. 105, 473–82.

    PubMed  Google Scholar 

  • Hsu, S. M., Raine, L. &Fanger, H. (1981) Use of avidinbiotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.J. Histochem. Cytochem. 29, 577–80.

    PubMed  Google Scholar 

  • Huang, W. M., Gibson, S. J., Facer, P., Gu, J. &Polak, J. M. (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers ofl-lysine as a slide coating.Histochemistry 77, 275–9.

    PubMed  Google Scholar 

  • Kasugai, S., Todescan, R., Jr, Nagata, T., Yao, K-L., Butler, W. T. & Sodek, J. (1991) Expression of bone matrix proteins associated with mineralized bone tissue formation by adult rat bone marrow cellsin vitro. Inductive effects of dexamethasone on the osteoblastic phenotype.J. Cell Physiol, in press.

  • Mark, M. P., Prince, C. W., Oosawa, T., Gay, S., Bronckers, A. L. J. J. &Butler, W. T. (1987) Immunohistochemical demonstration of a 44-kDa phosphoprotein in developing rat bones.J. Histochem. Cytochem. 35, 707–15.

    PubMed  Google Scholar 

  • Mark, M. P., Butler, W. T., Prince, C. W., Finkelman, R. D. &Ruch, J. V. (1988) Developmental expression of 44-kDa bone phosphoprotein (osteopontin) and bone γ-carboxyglutamatic acid (Gla)-containing protein (osteocalcin) in calcifying tissues of rat.Differentiation 37, 123–36.

    PubMed  Google Scholar 

  • McKee, M. D., Nanci, A., Landis, W. J., Gotoh, Y., Gerstenfeld, L. C. &Glimcher, M. J. (1990) Developmental appearance and ultrastructural immunolocalization of a major 66 kDa phosphoprotein in embryonic and post-natal chicken bone.Anat. Rec. 228, 77–92.

    PubMed  Google Scholar 

  • McLean, I. W., Nakane, P. K. (1974) Periodate-lysineparaformaldehyde fixative: a new fixative for immunoelectron microscopy.J. Histochem. 22, 1077–83.

    PubMed  Google Scholar 

  • Nagata, T., Todescan, R., Goldberg, H. A., Zhang, Q. &Sodek, J. (1989) Sulphation of secreted phosphoprotein I (SPP-1, osteopontin) is associated with mineralized tissue formation.Biochem. Biophys. Res. Commun. 165, 234–40.

    PubMed  Google Scholar 

  • Nagata, T., Goldberg, H. A., Zhang, Q., Domenicucci, C. & Sodek, J. (1991) Biosynthesis of bone proteins by fetal porcine calvariaein vitro. Rapid association of sulfated sialoproteins (secreted phosphoprotein 1 and bone sialoprotein) and chondroitin sulfate proteoglycan (CS-PGIII) with bone mineral.Matrix, in press.

  • Nomura, S., Wills, A. J., Edwards, D. R., Heath, J. K. &Hogan, B. L. M. (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed byin situ hybridization.J. Cell Biol. 106, 441–50.

    PubMed  Google Scholar 

  • Oldberg, A., Franzen, A. &Heinegard, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an arg-gly-asp cell-binding sequence.Proc. Natl. Acad. Sci. USA 83, 8819–23.

    PubMed  Google Scholar 

  • Oldberg, A., Franzen, A. &Heinegard, D. (1988a) Primary structure of bone sialoprotein.J. Biol. Chem. 263, 19430–2.

    PubMed  Google Scholar 

  • Oldberg, A., Franzen, A., Heinegard, D., Pierschbacher, M. &Rouslahti, E. (1988b) Identification of a bone sialoprotein receptor in osteosarcoma cells.J. Biol. Chem. 263, 19433–6.

    PubMed  Google Scholar 

  • Otsuka, K., Yao, K-L., Wasi, S., Tung, P. S., Aubin, J. E., Sodek, J. &Termine, J. D. (1984) Biosynthesis of osteonectin by fetal procine calvarial cellsin vitro.J. Biol. Chem. 259, 9805–12.

    PubMed  Google Scholar 

  • Price, P. A., Williamson, M. K. &Ootawara, Y. (1985) Characterization of matrix Gla protein: a new vitamin K-dependent protein associated with the organic matrix of bone. InThe Chemistry and Biology of Mineralized Tissue (edited byButler, W. T.) pp. 159–63. Birmingham, AL: Ebsco Media Inc.

    Google Scholar 

  • Prince, C. W., Oosawa, T., Butler, W. T., Tomana, M., Bhown, A. S., Bhown, M. &Schrohenloher, R. E. (1986) Isolation, characterization and biosynthesis of a phosphorylated glycoprotein from rat bone.J. Biol. Chem. 262, 2900–7.

    Google Scholar 

  • Reinholt, F. P., Hultenby, K., Oldberg, A. &Heinegard, D. (1990) Osteopontin — a possible anchor of osteoclasts to bone.Proc. Natl. Acad. Sci. USA 87, 4473–5.

    PubMed  Google Scholar 

  • Richman, J. M. &Diewert, V. M. (1988) The fate of Meckel's cartilage chondrocytes in ocular culture.Dev. Biol. 129, 48–60.

    PubMed  Google Scholar 

  • Sage, H., Vernon, R. B., Decker, J., Funk, S. &Iruelaarispe, M. L. (1989a) Distribution of the calciumbinding protein SPARC in tissues of embryonic and adult mice.J. Histochem. Cytochem. 37, 819–29.

    PubMed  Google Scholar 

  • Sage, H., Vernon, R. B., Funk, S. E., Everitt, E. A. &Angello, J. (1989b) SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreadingin vitro and exhibits Ca+2-dependent binding to the extracellular matrix.J. Cell Biol. 109, 341–56.

    PubMed  Google Scholar 

  • Salonen, J., Domenicucci, C., Goldberg, H. A. &Sodek, J. (1990) Immunohistochemical localization of SPARC (osteonectin) and denatured collagen and their relationship to remodelling in rat dental tissues.Arch Oral Biol. 35, 337–46.

    PubMed  Google Scholar 

  • Silbermann, M., Reddi, A. H., Hand, A. R., Leapman, R. D., Von Der Mark, K. &Franzen, A. (1987) Chondroid bone arises from mesenchymal stem cells in organ cultures of mandibular condyles.J. Craniofac. Genetics Dev. Biol. 7, 59–80.

    Google Scholar 

  • Strauss, G. P., Closs, E. I., Schmidt, J. &Erfle, V. (1970) Gene expression during osteogenic differentiation in mandibular condylesin vitro.J. Cell Biol. 110, 1369–78.

    Google Scholar 

  • Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L. &Martin, G. R. (1981) Osteonectin, a bone specific protein linking mineral to collagen.Cell 26, 99–105.

    PubMed  Google Scholar 

  • Tung, P. S., Domenicucci, C., Wasi, S. &Sodek, J. (1985) Specific immunohistochemical localization of osteonectin and collagen types I and III in fetal and adult porcine dental tissues.J. Histochem. Cytochem. 33, 531–40.

    PubMed  Google Scholar 

  • Von Der Mark, K. &Von Der Mark, H. (1977) The role of three genetically distinct collagen types in endothelial ossification and calcification of cartilage.J. Bone Joint. Surg. 59B, 458–64.

    Google Scholar 

  • Wasi, S., Otsuka, K., Yao, K-L., Tung, P. S., Aubin, J. E., Sodek, J. &Termine, J. D. (1984) An osteonectin-like protein in porcine periodontal ligament and its synthesis by periodontal ligament fibroblasts.Biochem. Cell Biol. 62, 470–8.

    Google Scholar 

  • Zhang, Q., Domenicucci, C., Goldberg, H. A., Wrana, J. L. &Sodek, J. (1990) Characterization of secreted sialoprotein I (SPP-1, osteopontin), bone sialoprotein (BSP) and a 23 kDa glycoprotein from fetal porcine bone. Evidence that the 23 kDa protein is derived from SPP-1.J. Biol. Chem. 265, 7583–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhang, Q., McCulloch, C.A.G. et al. Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin). Histochem J 23, 281–289 (1991). https://doi.org/10.1007/BF01045047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045047

Keywords

Navigation