Skip to main content
Log in

A constitutive law for rock salt based on creep and relaxation tests

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

The paper deals with uniaxial relaxation tests on rock salt which are the basis for a constitutive equation. Since so far no regard was paid to relaxation behaviour, corresponding test results are not available and hence a special device for performing of uniaxial relaxation tests had to be constructed. Some interesting test results are discussed in the paper. These results are useful for the verification of constitutive equations. A critical analysis of conventional constitutive laws and their fundamentals shows that these material laws have considerable imperfections and are rested on substantial restrictions. Particularly, they are not able to describe relaxation behaviour sufficiently. Consequently, a constitutive law is proposed consisting of a strain hardening approach with separate creep and relaxation functions. By post-calculation of different laboratory tests it could be shown that in comparison to conventional steady-state creep equations this material law describes the viscous behaviour of rock salt more realistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, H., Hunsche, U. (1980): Gebirgsmechanische Aspekte bei der Endlagerung radioaktiver Abfälle in Salzdiapiren unter besonderer Berücksichtigung des Fließverhaltens von Steinsalz. Fortschr. Miner. 58, 212–247.

    Google Scholar 

  • Balthasar, K., Haupt. M., Lempp, C., Natau, O. (1987): Stress relaxation behaviour of rock salt: Comparison of in situ measurements and laboratory test results. Proc. 6th Int. Congr. Rock Mech., Montreal.

  • Becker, E., Bürger, W. (1975). Kontinuumsmechanik. B. G. Teubner, Stuttgart.

    Google Scholar 

  • Cernocky, E. P., Krempl, E. (1979): A non-linear uniaxial integral constitutive equation incorporating rate effects, creep and relaxation. Int. J. Nonlinear Mech. 14, 183–203.

    Google Scholar 

  • Cernocky, E. P., Krempl, E. (1980): A theory of viscoplasticity based on infinitesimal total strain. Acta Mechanica 36, 263–289.

    Google Scholar 

  • Dreyer, W. (1967): Die Festigkeitseigenschaften natürlicher Gesteine insbesondere der Salz- und Karbongesteine. Clausthaler Hefte zur Lagerstättenkunde und Geochemie der mineralischen Rohstoffe 5.

  • Fernandez, G., Hendron, A. J. (1984): Interpretation of a long-term in situ borehole test in a deep salt formation. Bull. of the Ass. of Eng. Geol. 21, 23–38.

    Google Scholar 

  • Frost, H. J., Ashby, M. F. (1984). Deformation-mechanism maps. Pergamon Press, Oxford.

    Google Scholar 

  • Haupt, M. (1988): Entwicklung eines Stoffgesetzes für Steinsalz auf der Basis von Kriech- und Relaxationsversuchen. Veröff. Inst. für Bodenmech. und Felsmech. der Universität Karlsruhe.

  • Heard, H. C. (1972): Steady-state flow in polycrystalline halite at pressure of 2 kilobars. Flow and Fracture of Rocks, Am. Geophys. Union, 191–209.

  • Höfer, K.-H., Knoll, P. (1971): Investigations into the mechanism of creep deformation in carnallitite and practical applications. Int. J. Rock Mech. Min. Sci. 8, 61–73.

    Google Scholar 

  • Le Comte, P. (1965): Creep in rock salt. J. of Geology 73, 469–484.

    Google Scholar 

  • Liu, M. C. M., Krempl, E. (1979): A uniaxial viscoplastic model based on total strain and overstress. J. Mech. Phys. Solids 27 377–391.

    Google Scholar 

  • Lomenick, T. F., Bradshaw, R. L. (1969): Deformation of rock salt in openings mined for the disposal of radioactive wastes. Rock Mechanics 1 (1), 5–29.

    Google Scholar 

  • McCartney, L. N. (1976): No time — gentlemen please! Philos. Mag. 33, 689–695.

    Google Scholar 

  • McVetty, P. G. (1943): Creep of metals at elevated temperatures — the hyperbolicsine relation between stress and creep rate. Transactions of the A. S. M. E., 761–769.

  • Menzel, W., Schreiner, W. (1975): Das Festigkeits- und Verformungsverhalten von Carnallitit als Grundlage für die Standsicherheitsbewertung von Grubenbauten. Neue Bergbautechnik 5, 451–457.

    Google Scholar 

  • Menzel, W., Schreiner, W. (1977): Zum geomechanischen Verhalten von Steinsalz verschiedener Lagerstätten der DDR. Teil II: Das Verformungsverhalten. Neue Bergbautechnik 7, 565–574.

    Google Scholar 

  • Mott, N. F. (1953): A theory of work-hardening of metals — II: Flow without sliplines, recovery and creep. Philos. Mag. 44, 742–765.

    Google Scholar 

  • Munson, D. E., Dawson, P.R. (1984): Salt constitutive modeling using mechanism maps. First Conf. Mech. Beh. of Salt, Pennsylvania State University, University Park.

  • Nadai, A. (1938): The influence of time upon creep, the hyperbolic sine creep law. Timoshenko Anniversary Volume, Macmillan, New York, 155–170.

    Google Scholar 

  • Nicolas, A., Poirier, J. P. (1976). Crystalline plasticity and solid flow in metamorphic rocks. J. Wiley, New York.

    Google Scholar 

  • Odqvist, F. K. G., Hult, J. (1962): Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin Göttingen Heidelberg.

    Google Scholar 

  • Poirier, J. P. (1985). Creep of crystals. Cambridge University Press, Cambridge.

    Google Scholar 

  • Prandtl, L. (1928): Ein Gedankenmodell zur kinematischen Theorie der festen Körper. Zeitschr. f. angew. Mathem. u. Mechanik 8, 85–106.

    Google Scholar 

  • Reiner, M. (1968): Rheologie in elementarer Darstellung. Carl Hanser Verlag, München.

    Google Scholar 

  • Rivlin, R. S. (1970): Red herrings and sundry unidentified fish in non-linear continuum mechanics. Inelastic behaviour of solids. McGraw-Hill, New York.

    Google Scholar 

  • Serata, S. (1968): Application of continuum mechanics to design of deep potash mines in Canada. Int. J. Rock Mech. Min. Sci. 5, 293–314.

    Google Scholar 

  • Thoms, R. L., Char, C. V., Bergeron, W. J. (1973): Finite element analysis of rock-salt pillar models. Proc. 14th Symp. Rock Mech., Pennsylvania, 392–408.

  • Verrall, R. A., Fields, R. J., Ashby, M. F. (1977): Deformation-mechanism maps for LiF and NaCl. J. of the Am. Ceramic Soc. 60, 211–216.

    Google Scholar 

  • Wagner, R. A. (1982): An evaluation of a finite element simulation of the thermomechanical response of dome salt to an emplaced heat source. Int. Symp. Num. Models in Geomech., Zurich, 499–507.

  • Wawersik, W. R. (1985): Determination of steady state creep rates and activation parameters for rock salt. Spec. Techn. Publ. 869, Am. Soc. for Testing and Materials, Philadelphia.

    Google Scholar 

  • Wawersik, W. R., Herrmann, W., Montgomery, S. T., Lauson, H. S. (1984): Excavation design in rock salt — laboratory experiments, material modeling and validations. Proc. ISRM-Symp. Aachen, 1345–1356.

  • Winkel, B. V., Gerstle, K. H., Ko, H. Y. (1972): Analysis of time-dependent deformations of openings in salt media. Int. J. Rock Mech. Min. Sci. 9, 249–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haupt, M. A constitutive law for rock salt based on creep and relaxation tests. Rock Mech Rock Engng 24, 179–206 (1991). https://doi.org/10.1007/BF01045031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045031

Keywords

Navigation