Skip to main content
Log in

Effects of turbulence on gas-phase atmospheric chemistry: Calculation of the relationship between time scales for diffusion and chemical reaction

  • Model Strategy
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Non-uniform mixing of gas-phase trace species may limit the accuracy of the predictions of Eulerian transport/transformation models if the chemical reactions are rapid enough to be diffusion limited. If a reaction is diffusion limited, its average reaction rate might not be accurately represented by those models that assume instantaneous uniform mixing. One possible consequence of this artificial dilution is the overprediction of ozone and hydroxyl radicals. We have determined which reactions in the Regional Acid Deposition Model Gas-Phase Chemical Mechanism (Stockwell et al., 1990) are diffusion limited for a typical atmospheric condition through the calculation of Damköhler numbers. Damköhler numbers are defined to be the ratio of the diffusion mixing time to the chemical reaction time for a given chemical reaction (McRae et al., 1982; Hill, 1976). The reactions of hydroxyl radicals and the reactions of peroxy radicals with NO are diffusion limited under typical atmospheric conditions. Both sets of reactions are especially significant because NOx and organic species strongly affect ozone and hydroxyl radical concentrations. It is suggested that Damköhler numbers could be used to help determine the placement of Eulerian model boundaries and to determine model grid structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, A. W., 1973:A Textbook of Physical Chemistry. New York: Academic Press.

    Google Scholar 

  • Arellano, J. V.-G. d., Talmon, A. M., Builtjes, P. J. H., 1990: A chemically reactive plume model for the NO−NO2−O3 system.Atmos. Environ.,24A, 2237–2246.

    Google Scholar 

  • Bange, P., Janssen, L. H. J. M., Nieuwstadt, F. T. M., Visser, H., Erbrink, J. J., 1991: Improvement of the modelling of daytime nitrogen oxide oxidation in plumes by using instantaneous plume dispersion parameters.Atmos. Environ.,25A, 2321–2328.

    Google Scholar 

  • Carmichael, G. R., Peters, L. K., Saylor, R. D., 1991: The STEM-II regional scale acid deposition and photochemical oxidant model — 1. An overview of model development and applications.Atmos. Environ.,25A, 2077–2090.

    Google Scholar 

  • Carter, W. P. L., Lurmann, F. W., 1989: Evaluation of the RADM gas-phase mechanism, U. S. Environ. Prot. Agency, Cooperative Agreement CR-814558-01-0, Statewide Air Polluti. Res. Cent., Univ. of Calif. Riverside.

  • Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., Walcek, C. J., 1987. A three-dimensional Eulerian acid deposition model. physical concepts and formulation.J. Geophys. Res.,92, 14681–14700.

    Google Scholar 

  • Gao, D., Milford, J. B., 1993: Application of sensitivity and uncertainty analysis to the RADM2 mechanism. In:Proceedings of the 86th Annual Meeting of the Air & Waste Management Association, June 13–18, Denver, Colorado. Available from Air & Waste Management Association, One Gateway Center, Pittsburgh, Pennsylvania.

  • Gao, D., Milford, J. B., Stockwell, W. R., 1993:Uncertainty in Chemical Mechanisms for Air Quality Modeling. EPRI Agreement RP3189-06, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Gear, C. W., 1971:Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Geiss, H., Volz-Thomas, A., 1992:Lokale und Regionale Ozonproduktion: Chemie und Transport. Forschungszentrum Jülich, Federal Republic of Germany.

    Google Scholar 

  • Hill, J. C., 1976: Homogeneous turbulent mixing with chemical reaction.Annual Rev. Fluid Mech.,8, 135–161.

    Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., 1964:Molecular Theory of Gases and Liquids. (corrected ed.) New York: Wiley.

    Google Scholar 

  • Hov, O. Isaksen, I. S. A., 1981: Generation of secondary pollutants in a power plant plume: a model study.Atmos. Environ.,15, 2367–2376.

    Google Scholar 

  • Isaksen, I. S. A., Hesstvedt, E., Hov, O., 1978: A chemical model for urban plumes: test for ozone and particulate sulfur formation in St. Louis urban plume.Atmos. Environ.,12, 599–604.

    Google Scholar 

  • Jacob, D. J., Logan, J. A., Yevich, R. M., Gardner, G. M., Spivakovsky, C. M., Wofsy, S. C., Munger, J. W., Sillman, S., Prather, M. J., Rodgers, M. O., Westberg, H., Zimmerman, P. R., 1993: Simulation of summertime ozone over North America.J. Geophys. Res.,98, 14797–14816.

    Google Scholar 

  • Kanakidou, M., Crutzen, P. J., 1993: Scale problems in global tropospheric chemistry modelling. In: Borrell, P. M., Borrell, P., Cvitas, T., Seiler, W. (eds.)Photo-oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium '92 Garmisch-Partenkirchen, Federal Republic of Germany, 23rd–27th March 1992. Den Haag, The Netherlands: SPB Academic Publishing, pp. 471–473.

    Google Scholar 

  • Karamchandani, P., Venkatram, A., 1992: The role of nonprecipitating clouds in producing ambient sulfate during summer: results from simulations with the acid deposition and oxidant model (ADOM)Atmos. Environ.,26A, 1041–1052.

    Google Scholar 

  • Kley, D., Geiss, H., Klemp, D., Kramp, F., Su, Y., Volz-Thomas, A., 1993: The importance of hydrocarbon measurements. In: Borrell, P. M., Borrell, P., Cvitas, T., Seiler, W. (eds.)Photo-oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium '92 Garmisch-Partenkirchen, Federal Republic of Germany, 23rd–27th March 1992. Den Haag. The Netherlands: SPB Academic Publishing, pp. 70–79.

    Google Scholar 

  • Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., Hubler, G., Murphy, P. C., 1987: Ozone production in the rural troposphere and implications for regional and global ozone distributions.J. Geophys. Res.,92, 4191–4207.

    Google Scholar 

  • Mathur, R., Peters, L. K., Sayor, R. D., 1992: Sub-grid representation of emission source clusters in regional air quality modeling.Atmos. Environ.,26A, 3219–3238.

    Google Scholar 

  • McRae, G. J., Gooden, W. R., Seinfeld, J. H., 1982:Mathematical Modeling of Photochemical Air Pollution. EQL Report No. 18, Environmental Quality Laboratory, California Institute of Technology, Pasadena, California, United States.

    Google Scholar 

  • Middleton, P., Stockwell, W. R., Carter, W. P. L., 1990: Aggregation and analysis of volatile organic compound emissions for regional modeling.Atmos. Environ.,24A, 1107–1133.

    Google Scholar 

  • National Center for Atmospheric Research, 1983:Regional Acid Deposition: Models and Physical Processes. NCAR Technical Note, NCAR/TN-214+STR, National Center for Atmospheric Research, Boulder, Colorado, United States

    Google Scholar 

  • Pleim, J. E., Chang, J. S., Zhang, K., 1991: A nested grid mesoscale atmospheric chemistry model.J. Geophys. Res.,96, 3065–3084.

    Google Scholar 

  • Shu, W. R., 1976:Turbulent Chemical Reactions: Application to Atmospheric Chemistry. Ph.D. Dissertation, Department of Chemical Engineering, California Institute of Technology, Pasadena, California United States.

    Google Scholar 

  • Sillman, S., Logan, J. A., Wofsy, S. C., 1990: A regional scale model for ozone in the United States with subgrid representation of urban and power plant plumes.J. Geophys. Res.,95, 5731–5748.

    Google Scholar 

  • Stockwell, W. R., Middleton, P., Chang, J. S., Tang, X., 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling.J. Geophys. Res.,95, 16,343–16,367.

    Google Scholar 

  • Stockwell, W. R., Milford, J. B., Gao, D., Yang, Y. J., 1993: An analysis of the uncertainties in an atmospheric chemical mechanism. In:Proceedings of the 86th Annual Meeting of the Air & Waste Management Association, June 13–18, Denver, Colorado. Available from Air & Waste Management Association, One Gateway Center, Pittsburgh, Pennsylvania.

  • Stockwell, W. R., Milford, J. B., McRae, G. J., Middleton, P., Chang, J. S., 1988: Nonlinear coupling in the NO x −SO x -reactive organic system.Atmos. Environ.,22, 2481–2490.

    Google Scholar 

  • Stull, R. B., 1988:Introduction to Boundary Layer Meteorology. Boston: Kluwer.

    Google Scholar 

  • Sykes, R. I., Parker, S. F., Henn, D. S., Lewellen, W. S., 1993: Large-eddy simulations of the interactions between turbulent mixing and chemical reactions in the planetary boundary layer.Preprint Volume, Conference on Atmospheric Chemistry, January 17–22, 1993, Anaheim, California. Available from American Meteorological Society, 45 Beacon Street, Boston.

  • Zannetti, P., 1990:Air Pollution Modeling: Theories, Computational Methods and Available Software. New York: Van Nostrand Reinhold.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockwell, W.R. Effects of turbulence on gas-phase atmospheric chemistry: Calculation of the relationship between time scales for diffusion and chemical reaction. Meteorl. Atmos. Phys. 57, 159–171 (1995). https://doi.org/10.1007/BF01044159

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044159

Keywords

Navigation