Advertisement

Meteorology and Atmospheric Physics

, Volume 57, Issue 1–4, pp 61–86 | Cite as

Fog chemistry during EUMAC Joint Cases: Analysis of routine measurements in southern Germany and model calculations

  • R. Forkel
  • W. Seidl
  • A. Ruggaber
  • R. Dlugi
Clouds and Aerosol

Summary

The role of fog events for acid production and moist deposition in southern Germany during three EUMAC Joint Cases has been investigated by analysis of routine measurements and simulations with a one-dimensional fog-chemistry model. To identify the chemical and meteorological conditions, routine measurements by different institutions have been interpreted. The periods under consideration include a smog episode with low photooxidant concentrations during the ‘Winter Case’ in February 1982. The ‘Wet Case’ in spring 1986 represents a period with higher photooxidant concentrations. Conditions which are mostly characterized by low SO2 and oxidant concentrations and comparatively high pH-values in the fog are given during the ‘SANA 1’ case in autumn 1990. Fog mostly occurs as a subscale phenomenon, but sometimes it can also cover large areas and it can contribute significantly to moist deposition.

The model results indicate that the liquid phase sulfate production in the fog layer may even exceed the gas phase production during 24 hours within a layer of the same height occasionally. On the other hand, during the SANA 1 case the sulfate production in the fog was extremely low at night due to lack of oxidants and SO2. Depending on the dissipation time of the fog a remarkable effect on the photolysis rates is possible. Since a significant amount of particulate mass is lost by moist deposition during fog, it is evident that fog events can have a noticeable effect on some of the gas phase constituents which are easily soluble.

Keywords

Photolysis Phase Production Oxidant Concentration Phase Constituent Smog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandy, B., Penkett, S. A., Choularton, T. W., Harrison, O., Gay, M., Stromberg, I. M., 1990: Seasonal variation at ground level and vertical profiles of gas phase hydrogen peroxide and ozone above Great Dun Fell in Northern England. Poster presented at EUROTRAC-Symposium, Garmisch-Partenkirchen.Google Scholar
  2. Bayerisches Landesamt für Umweltschutz, 1983: Lufthygienischer Jahresbericht 1982.Google Scholar
  3. Bayerisches Landesamt für Umweltschutz, 1987: Lufthygienischer Jahresbericht 1986.Google Scholar
  4. Bayerisches Landesamt für Umweltschutz, 1991: Lufthygienischer Jahresbericht 1990.Google Scholar
  5. Betterton, E. A., 1991: The partitioning of Ketones between the gas and aqueous phases.Atmos. Environ. 25A, 1473–1477.Google Scholar
  6. Betterton, E. A., Hoffmann, M. R., 1988: Henry's law constants of some environmentally important aldehydes.Environ. Sci. Technol.,22, 1415–1418.Google Scholar
  7. Bott, A., Carmichael, G. R., 1993: Multiphase chemistry in a microphysical radiation fog model.Atmos. Environ.,27A, 503–522.Google Scholar
  8. Boyce, S. D., Hoffmann, M. R., 1984: Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH.J. Phys. Chem.,88, 4740–4746.Google Scholar
  9. Capel, P. D., Leuenberger, C., Giger, W., 1991. Hydrophobic organic chemicals in urban fog.Atmos. Environ.,25A, 1335–1346.Google Scholar
  10. Chameides, W. L., 1986: Reply.J. Geophys. Res.,91D, 14571–14572.Google Scholar
  11. Chang, J. S., Brost, A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., Walcek, C. J., 1987. A three-dimensional Eulerian acid deposition model: physical concepts and formulation.J. Geophys. Res.,92D, 14681–14700.Google Scholar
  12. Clark, P., Marsh, T., 1990: Poster presented at the EUROTRAC-Symposium, Garmisch-Partenkirchen 1990.Google Scholar
  13. Countess, R. J., Wolff, G. T., Cadle, S. H., 1980: The Denver winter aerosol: A comprehensive chemical characterization.JAPCA,30, 1194–1200.Google Scholar
  14. Dentener, F. J., Crutzen, P., 1993: Reaction of N2O5 on tropospheric aerosols: impact of global distributions of NOx, O3, and OH.J. Geophys. Res.,98D, 7149–7163.Google Scholar
  15. Downer R. M., Bower, K. N., Gallagher, M. W., Choularton, T. W., Tyler, B. J., Stromberg, I. M., Mill, C. S., Penkett, S. A., Bandy, B. J., Dollard, G. J., Davies, T. J., Jones, B. M. R., 1989: The role of hydrogen peroxide entrainment on sulfate production in cloud — measurements and modelling. Proceedings International Workshop of Cloud Chemistry and Wet Deposition April 10–12 1990, Utrecht.Google Scholar
  16. Enders G., Dlugi, R., Steinbrecher, R., Clement, B., Daiber, R., Eijk, J. v., Gäb, S., Haziza, M., Helas, G., Herrmann, U., Kessel, M., Kesselmeier, J., Kotzias, D., Kourtidis, K., Kurth, H. H., McMillen, R. T., Roider, G., Schürmann, W., Teichmann, U., Torres, L., 1991: Biosphere/atmosphere interactions: integrated research in a European coniferous forest ecosystem.Atmos. Environ.,25A, 171–189.Google Scholar
  17. Facchini, M. CC., Fuzzi, S., Lind, J. A., Fierlinger-Oberlinninger, H., Kalina, M., Puxbaum, H., Winiwarter, W., Arends, B. G., Wobrock, W., Jaeschke, W., Berner, A., Kruisz, C., 1992: Phase-partitioning and chemical reactions of low molecular weight organic compounds in fog.Tellus,44B, 533–544.Google Scholar
  18. Forkel, R., Seidl, W., Dlugi, R., Deigele, E., 1990: A one-dimensional numerical model to simulate formation and balance of sulfate during radiation fog events.J. Geophys. Res.,95D, 18501–18515.Google Scholar
  19. Fritsche, U., Brockhaus, A., Hochrainer, D., Wichmann, H. E., Waldman, J. M., 1989: Comparison of acidic aerosols at two sites in Germany.J. Aerosol Sci.,20, 1245–1247.Google Scholar
  20. Fuzzi, S., Orsi, G., Nardini, G., Facchini, M., McLaren, S., McLaren, E., Mariotti, M., 1988: Heterogeneous processes in the Po valley radiation fog.J. Geophys. Res.,93D, 11141–11151.Google Scholar
  21. Fuzzi, S., Facchini, M. C., Orsi, G., Lind, J. A., Wobrock, W., Kessel, M., Maser, R., Jaeschke, W., Enderle, K. H., Arends, B. G., Berner, A., Solly, I., Kruiz, C., Reischl, G., Pahl, S., Kaminski, U., Winkler, P., Ogren, J. A., Noone, K. J., Hallberg, A., Fierlinger-Oberlinninger, H., Puxbaum, H., Marzorati, A., Hansson, H.-C., Wiedensohler, A., Svenningson, I. B., Martinsson, B. G., Schell, D., Georgii, H. W., 1992: The Po valley fog experiment 1989. An overview.Tellus,44B, 448–468.Google Scholar
  22. Gallagher, H. W., Downer, R. M., Choularton, T. W., Gay, M. J., Stromberg, I., Mill, C. S., Radojevic, M., Tyler, B. J., Bandy, B. J., Penkett, S. A., Davies, T. J., Dollard, G. J., Jones, B. M. R., 1990: Case studies of the oxidation of sulphur dioxide in a hill cap cloud using ground and aircraft based measurements.J. Geophys. Res.,95D, 18517–18537.Google Scholar
  23. Graedel, T. E., Goldberg, K. I., 1983: Kinetic studies of raindrop chemistry 1. Inorganic and organic processes.J. Geophys. Res.,88C, 10865–10882.Google Scholar
  24. Hahn, J., Gunz, D., Matuska, P., 1991: Seasonal variations of tropospheric non-methane hydrocarbons at two mountain stations in the Bavarian alps. In: Borrell, P. et al. (eds.)Proceedings of EUROTRAC Symposium 90. The Hague, The Netherlands: SPB Academic Publishing bv, 143–147.Google Scholar
  25. Hänel, G., Zankl, B., 1979: Aerosol size and relative humidity: water uptake by mixtures of salts.Tellus,31, 478–486.Google Scholar
  26. Harrison, R. M., Allan, A. G., 1990: Measurements of atmospheric HNO3, HCl and associated species on a small network in Eastern England.Atmos. Environ.,24A, 369–376.Google Scholar
  27. Heintzenberg, J., 1992: The Po valley fog experiment 1989. What have we learned, where do we go from here?Tellus,44B, 443–447.Google Scholar
  28. Hoffmann, M. R., Calvert, J. G., 1985: Chemical transformation modules for Eulerian acid deposition models. Report Acid Deposition Modeling Project, National Center of Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307.Google Scholar
  29. Hoppel, W. A., Frick, G. M., 1990: Submicron aerosol size distributions measured over the tropical and South Pacific.Atmos. Environ.,24A, 649–659.Google Scholar
  30. Jacob, D. J., Hoffmann, M. R., 1983: A dynamic model for the production of H+, NO3, and SO4 in urban fog.J. Geophys. Res.,88C, 6611–6621.Google Scholar
  31. Jacob, J. D., Waldman, J. M., Munger, J. W., Hoffmann, M. R., 1984: A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets.Tellus,36B, 272–285.Google Scholar
  32. Jacob, J. D., Munger, J. W., Waldman, J. M., Hoffman, M. R. 1986: The H2SO4−HNO3−NH3 system at high humidities and in fogs 1. Spatial and temporal patterns in the San Joaquin valley of California.J. Geophys. Res.,92D, 1073–1088.Google Scholar
  33. Jacob, D. J., Shair, F. H., Waldman, J., Munger, J. W., Hoffmann, M. R., 1987: Transport and oxidation of SO2 in a stagnant foggy valley.Atmos. Environ.,21, 1305–1314.Google Scholar
  34. Jacob, D. J., Gottlieb, E. W., Prather, M. J. 1989: Chemistry of a polluted cloudy boundary layer.J. Geophys. Res.,94D, 12975–13002.Google Scholar
  35. Jaeschke, W., 1989: Teilprojekt C2: Redoxprozesse in Nebel und Wolkenwasser. Tätigkeitsbericht des SFB 233 für 1987–1988, 186–205.Google Scholar
  36. Johnson, C. A., Sigg, L., Zobrist, J., 1987: Case studies on the chemical composition of fogwater: the influence of local emissions.Atmos. Environ.,21, 2365–2374.Google Scholar
  37. Joos, F., Baltensberger, U., 1991: A field study on chemistry, S(IV) Oxidation rates and vertical transport during fog conditions.Atmos. Environ.,15A, 217–230.Google Scholar
  38. Kames, J., Schurath, U., 1993: Properties of mono- and bi-functional organic Nitrates pertinent to atmospheric clouds. In: P. M. Borrell (ed.)The Proceedings of EUROTRAC Symposium '92. The Hague, The Netherlands: SPB Academic Publishing bv, pp. 629–633.Google Scholar
  39. Khan, I., Brimblecombe, P., 1992: Henry's law constants of low molecular weight (<130) organic acids.J. Aerosol Sci.,23, 897–900.Google Scholar
  40. Klemm, O., Talbot, R. W., Klemm, K. I., 1992: Sulfur dioxide in coastal New England fog.Atmos. Environ.,26A, 2063–2075.Google Scholar
  41. Kumai, M., 1973: Arctic fog droplet size distribution and its effect on light attenuation.J. Atmos. Sci.,30, 635–1048.Google Scholar
  42. Kunkel, B. A., 1971: Fog drop-size distributions measured with a laser hologram camera.J. Appl. Meteor.,10, 482–486.Google Scholar
  43. Lelieveld, J., Crutzen, P. J., 1991: The role of clouds in tropospheric photochemistry.J. Atmos. Chem.,12, 229–267.Google Scholar
  44. Lind, J., Lazrus, A., 1986: Measurements of hydrogen peroxide vapor at S. Pietro capofiume In: Fuzzi, S. (ed.)Heterogeneous Atmospheric Chemistry Project Collected Reports of Participants to the fog Project November 1985 at the Field Station of S. Pietro Capofiume in the Po Valley. Instituto FISBAT-C.N.R., Via de' Castagnoli 1, 40126 Bologna (Italy), 27–31.Google Scholar
  45. Lindskog, A., 1990: Results from the IVL TOR Station at Rörvik, Sweden. EUROTRAC Annual Report 1989. Part 9: TOR Tropospheric Ozone Research. EUROTRAC Scientific Secretariat, Garmisch-Partenkirchen, 85–90.Google Scholar
  46. Lindskog, A., Grennfelt, P., 1991: Results from the IVL TOR Station at Rörvik, Sweden. Proceedings of EUROTRAC Symposium '90, ed. P. Borrell et al., SPB Academic Publishing, The Hague, The Netherlands, 507–509.Google Scholar
  47. Maser, R., Obenland, H., Jaeschke, W., Beltz, N., Herrmann, J., 1990: Study of cloudwater chemistry-Tehnical development. Poster presented at EUROTRAC-Symposium, Garmisch-Partenkirchen 1990.Google Scholar
  48. Middleton, P., Stockwell, W. R., Carter, W. P. L., 1990: Aggregation and analysis of volatile organic compound emissions for regional Modeling.Atmos. Environ.,24A, 1107–1133.Google Scholar
  49. Mozurkewich, M., 1986: Comment on ‘Possible Role of NO3 in the Nighttime Chemistry of a Cloud’ by William L. Chameides.J. Geophys. Res.,91D, 14569–14570.Google Scholar
  50. Mozurkewich, M., Calvert, J., 1988: Reaction probability of N2O5 on aqueous aerosols.J. Geophys. Res.,93D, 15889–15896.Google Scholar
  51. Munger, J. W., Jacob, D. J., Waldman, J. M., Hoffmann, M. R., 1983: Fogwater chemistry in an urban atmosphere.J. Geophys. Res.,88, 5109–5121.Google Scholar
  52. Munger, J. W., Collett, J., Daube, B., Hoffmann, M. R., 1990: Fogwater chemistry at riverside, California.Atmos. Environ.,24B, 185–205.Google Scholar
  53. Ohta, S., Okita, T., Kato, C., 1981: A numerical model of acidification of cloud water.J. Meteor. Soc. Japan,59, 893–901.Google Scholar
  54. Pandis, S. N., Seinfeld, J. H., 1989a: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry.J. Geophys. Res.,94D, 1105–1126.Google Scholar
  55. Pandis, S. N., Seinfeld, J. H., 1989b: Mathematical modeling of acid deposition due to radiation fog.J. Geophys. Res.,94, 12911–12923.Google Scholar
  56. Pilié, R. J., Mach, E. J., Kocmond, W. C., Eadie, W. J., Rogers, C. W., 1975: The life cycle of valley fog. Part II: Fog microphysics.J. Appl. Meteor.,14, 364–374.Google Scholar
  57. Poppe, D., Kuhn, M., Arlander, D., Müller, K. P., Rohrer, F., Wahner, A., 1993: Comparison of measured diurnal cycles of ozone, formaldehyde, peroxiacetylnitrate (PAN), and peroxides with the result from a chemistry and transport Model. Eurotrac Annual Report 1992, Part 5, Eurotrac International Scientific Secretariat, Garmisch-Partenkirchen.Google Scholar
  58. Puxbaum, H., Rosenberg, C., Gregori, M., Lanzerstorfer, C., Ober, E., Winiwarter, W., 1988: Atmospheric concentrations of formic acid and acetic acid and related compounds in Eastern and Northern Austria.Atmos. Environ.,22, 2841–2850.Google Scholar
  59. Ruggaber, A., Forkel, R., Dlugi, R., 1993: Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations.J. Geophys. Res.,98, 1151–1162.Google Scholar
  60. Ruggaber, A., Dlugi, R., Nakajima, T., 1994: Modelling of radiation quantities and photolysis frequencies in the troposphere.J. Atmos. Chem.,18, 171–210.Google Scholar
  61. Seidl, W., Forkel, R., Ruggaber, A., Dlugi, R., 1993: Modelling of N2O5 loss due to surface reaction with aerosol particles. Poster, 12th Ann. Meeting of the AAAR, Oak Brook, Illinois., October 1993.Google Scholar
  62. Sigg, A., Neftel, A., Lehmann, M., 1991: H2O2 Measurements in the boundary layer over Switzerland during summer smog episodes, Proceedings COST-BIATEX-Workshop, Delft 1991.Google Scholar
  63. Sørensen, P. E., Andersen, V. S., 1970: The formaldehydehydrogen sulfite system an alkaline aqueous solution: kinetics, mechanics, and equilibria.Acta Chem. Scand.,24, 1301–1306.Google Scholar
  64. Stockwell, W. R., Middleton, P., Chang, J. S., Tang, X., 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling.J. Geophys. Res.,95D, 16343–16367.Google Scholar
  65. Sverdrup, G. M., Whitby, K. T., Clark, W. E., 1975: Characterization of California aerosols II. Aerosol size distribution measurements in the Mojave Desert.Atmos. Environ.,9, 483–494.Google Scholar
  66. Tremmel, H.-G., Junkermann, W., Slemr, F., 1990: Aircraft measurements of H2O2 spatial distribution over the Northeastern US and West Germany, in Abstracts of the Symposium Chemistry of the Global Atmosphere, 5–11 Sept. 1990, Chamrousse, France, 212.Google Scholar
  67. Vogel H., Fiedler, F., Vogel, B., 1993: The sensitivity of modelled ozone distributions in the State of Baden-Württemberg to biogenic emissions. Contribution to the TNO/EURASAP Workshop “On the Reliability of VOC Databases”, 9–11 June 1993, Delft/NL.Google Scholar
  68. Volz-Thomas, A., Smit, H. G. J., Kley, D., Aschmutat, U., Buers, H. J., Flocke, F., Garthe, H. J., Geiß, H., Gilge, S., Heil, T., Houben, N., Klemp, D., Loup, H., Mihelcic, D., Müsgen, P., Plätz, H. W., Pilwat, G., Sträter, W., Su, Y., 1991: Local and regional ozone production: chemistry and transport. EUROTRAC Annual Report 1990. Part 9: TOR Tropospheric Ozone Research. EUROTRAC Scientific Secretariat, Garmisch-Partenkirchen, 83–94.Google Scholar
  69. Whitby, K. T., Clark, W. E., Marple, V. A., Sverdrup, G. M., Sem, G. J., Willeke, K., Liu, B. Y. H., Piu, D.-Y. H., 1975: Characterization of Californian aerosols—a comparison of two sites.Atmos. Environ.,9, 463–482.Google Scholar
  70. Willeke, K., Whitby, K. T., Clark, W. E., Marple, V. A., 1974: Size distribution of Denver aerosols—a comparison of two sites.Atmos. Environ.,8, 609–633.Google Scholar
  71. Yoshizumi, K., Asakuno, K., 1986: Characterization of atmospheric aerosols in Chichi of the Ogasawara (Bonin) islands.Atmos. Environ.,20, 151–155.Google Scholar
  72. Zetsch, C., Behnke, W., 1992: Photocatalysis of tropospheric chemistry by sea spray aerosol. EUROTRAC Annual Report 1991, Part 6: HALIPP, 89–94.Google Scholar
  73. Ziegler, H., Karbach, I., Steinbrecher, R., 1991: Isopren als reaktive Luftkomponente: Biogene Emission und Vorkommen in der Atmosphäre, Wissenschaftlicher Bericht, Berichtszeitraum 1.7.90–20.7.91, Bayerisches Klimaforschungsprogramm BayFORKLIM, München.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. Forkel
    • 1
  • W. Seidl
    • 1
  • A. Ruggaber
    • 1
  • R. Dlugi
    • 1
  1. 1.Meterologisches Institut der Universität MünchenMünchenFederal Republic of Germany

Personalised recommendations