Skip to main content
Log in

Cloud model experiments of the effect of iron and copper on tropospheric ozone under marine and continental conditions

  • Clouds and Aerosol
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

We have used a multi-phase cloud photochemistry model to investigate the influence of dissolved iron (Fe) and copper (Cu) on the in-cloud production and loss of ozone and ozone-related species. Comparison of the results of our simulations with and without Fe and Cu reactions for three different photochemical scenarios (marine, averaged continental and polluted continental) indicate that Fe and Cu reactions, depending upon the scenario considered, can either increase or decrease the predicted rate of loss of ozone and ozone related species. For the marine and averaged continental scenarios the rate of loss of ozone in the aqueous-phase was decreased by as much as 45% and 70%, respectively, when Fe and Cu reactions were considered. For polluted continental conditions, the rate of loss of ozone in the aqueous phase increased with a factor 2 for low metal concentrations up to a factor 20 for high metal concentrations. In all three scenarios inclusion of the Fe and Cu reactions results in cloud droplets becoming more efficient sinks for gas-phase HO2 and also enhances OH production. The net effect of the decreased losses of ozone from the aqueous phase and the effect of the cloud droplets on HO2 and OH determine the overall impact on ozone and ozone related species, for each of the situations considered. Overall, when Fe and Cu reactions were included the marine cloud was found to be a less efficient sink for ozone, and averaged continental and polluted continental clouds were more efficient sinks for ozone (O3 losses doubled in the averaged continental scenario). The higher OH flux in the aqueous phase also enhances the rate at which organic compounds, such as formaldehyde and formic acid, are oxidized in the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asman, W. A. H., 1992: Ammonia Emission in Europe: Updated emission and emission variation. RIVM report, nr. 228471008, Bilthoven, The Netherlands.

  • Berdowski, J. J. M., Most, P. F. J., van der (eds.), 1993: The Netherlands, 5th Emission Inventory, 1990', nr. 13.

  • Bielski, B. H. J., cabelli, D. E., Arudi, R. L., Ross, A. B., 1985: Reactivity of HO2/O 2 radicals in aqueous solution.J. Phys. Chem. Ref. Data,14, 1041–1100.

    Google Scholar 

  • Bothe, E., Schulte-Frohlinde, D., 1980: Reaction of dihydroxymethyl radical with molecular oxygen in aqueous solution.Z. Naturforsch. B.,Anorg. Chem. Org. Chem.,35, 1035–1039.

    Google Scholar 

  • Boyce, S. D., Hoffmann, M. R., 1984: Kinetics and Mechanism of the formation of hydroxymethanesulfonic acid.J. Phys. Chem.,88, 4740–4746.

    Google Scholar 

  • Buhler, R. E., Staehelin, J., Hoigné, J., Ozone decomposition in water studied by pulse radiolysis 1. HO2/O 2 and HO3/O 2 as intermediates.J. Phys. Chem.,88, 2560–2564.

  • Buxton, G. V., Elliot, A. J., 1986: Rate constant for reaction of hydroxyl radicals with bicarbonate ions.Radiat. Phys. Chem.,27, 241–243.

    Google Scholar 

  • Buxton, G. V., Croft, A., Salmon, G. A., 1993: A pulse radiolysis study of some free radical reactions in systems containing HMSA. In: Borrell, P. M. et al. (eds.)Proceedings of Eurotrac Symposium '92, pp. 605–609.

  • Christensen, H., Sehested, K., 1981: Pulse radiolysis at high temperatures and pressures.Radiat. Phys. Chem.,18, 723–731.

    Google Scholar 

  • Christensen, H., Sehested, K., Corfitzen, H., 1982: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures.J. Phys. Chem.,86, 1588–1590.

    Google Scholar 

  • Church, T. M., Tramontano, J. M., Scudlark, J. R., Jickells, T. D., Tokos, J. J., Knap, A. H., Galloway, J. N., 1984: The wet deposition of trace metals to the western atlantic ocean at the mid-atlantic coast and on Bermuda.Atmos. Environ.,18, 2657–2664.

    Google Scholar 

  • Dentener, F., 1993: Heterogeneous Chemistry in the Troposphere, Ph.D. Thesis, State University Utrecht, The Netherlands.

    Google Scholar 

  • Derwent, R. G., Hov, O., 1979: Computer modelling studies of photochemical air pollution in north-west Europe. AERE Report R-9434. H. M. Stationary Office, London.

    Google Scholar 

  • Dutkiewicz, V. A., Burkhard, E. G., Husain, L., 1991: Tracers for cloud chemistry studies. In: S. E. Schwartz, W. G. Slinn (eds.),Precipitation Scavenging and Atmospheric-Surface Exchange. Washington D.C.: Hemisphere Publishing Company, pp. 319–330.

    Google Scholar 

  • Duynkerke, P. G., 1989: The diurnal variation of a marine stratocumulus layer: a model sensitivity study.Mon. Wea. Rev.,117 8, 1710–1725.

    Google Scholar 

  • Faust, B. C., Hoigné, J., 1990: photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain.Atmos. Environ.,24A, 79–89.

    Google Scholar 

  • Fuzzi, S., Orsi, G., Nardini, G., Facchini, M. C., McClaren, E., Mariotti, E., 1988: Heterogeneous processes in the Po Valley radiation fog.J. Geophys. Res.,93, 11,141–11,151.

    Google Scholar 

  • Galloway, J. N., Thornton, J. D., Norton, S. A., Volchok, H. L., McLean, R. A. N., 1982: Trace metals in atmospheric deposition: a review and assessment.Atmos. Environ.,16, 1677–1700.

    Google Scholar 

  • Graedel, T. E., Mandlich, M. L., Weschler, C. J., 1986: Kinetic studies of atmospheric droplet chemistry 2. Homogeneous transition metal chemistry in raindrops.J. Geophys. Res.,90, 5205–5221.

    Google Scholar 

  • Hartwick, T. J., 1957: The rate constant for the reaction between ferrous ions and hydrogen peroxide in acid solution.Can. J. Chem.,35, 428–436.

    Google Scholar 

  • Hofmann, H., Hoffmann, P., Lieser, K. H., 1991: Transition metals in atmospheric samples, analytical determination and speciation.Fresenius J. Anal. Chem.,340, 591–597.

    Google Scholar 

  • Hoigné, H., Zuo, Y., Nowell, L., 1993: Photochemical reactions in atmospheric waters; role of dissolved iron species. In: Helz, G., Zepp, R., Croby, D., (eds.)Aquatic and Surface Photochemistry, Chelsea, MI: Lewis Publishers.

    Google Scholar 

  • Hoigné, J., Bader, H., Haag, W. R., Staehelin, J., 1985: Rate constants of reactions of ozone with organic and inorganic compounds in water-III: inorganic compounds and radicals.Water Res.,19, 993–1004.

    Google Scholar 

  • Hough, A. M., Derwent, R. G., 1987: Computer modelling studies of the distribution of photochemical ozone production between different hydrocarbons.Atmos. Environ.,21, 2015–2033.

    Google Scholar 

  • Huie, R. E., Neta, P., 1987: Rate constants for some oxidations of S(IV) by radicals in aqueous solutions.Atmos. Environ.,21, 1743–1747.

    Google Scholar 

  • Jacob, D. J., 1986: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate.J. Geophys. Res.,91, D9, 9807–9826.

    Google Scholar 

  • Jacob, D. J., Gottlieb, E. W., Prather, M. J., 1989: Chemistry of a polluted cloudy boundary layer.J. Geophys. Res.,94, D10, 12975–13002.

    Google Scholar 

  • Jonson, J. E., Isaksen, I. S. A., 1993: Tropospheric ozone chemistry. The impact of cloud chemistry.J. Atmos. Chem.,16, 99–122.

    Google Scholar 

  • Joos, F., Baltensperger, U., 1991: A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions.Atmos. Environ.,25A, 217–230.

    Google Scholar 

  • Kotronarou, A., Sigg, L., 1992: Unpublished data from Dübendorf and Mt. Rigi, Switzerland.

  • Lee, Y. N., Shen, J., Klotz, P. J., Schwartz, S. E., Newmann, L., 1986: Kinetics of hydrogen peroxide-sulfur(IV) reaction in rainwater collected at a northern U.S. site.J. Geophys. Res.,91, 13264–13274.

    Google Scholar 

  • Lelieveld, J., Crutzen, P. J., 1990: The influences of cloud photochemical processes on tropospheric ozone.Nature,343, 227–233.

    Google Scholar 

  • Lelieveld, J., Crutzen, P. J., 1991: The role of clouds in tropospheric photochemistry.J. Atmos. Chem.,12, 229–267.

    Google Scholar 

  • Lelieveld, J., 1990: The Role of clouds on tropospheric photochemistry, Ph.D. thesis, State Univ. Utrecht, The Netherlands.

    Google Scholar 

  • Lim, B., Jickells, T. D., 1990: Dissolved, particulte and acid-leachable trace metal concentrations in north atlantic precipitation collected on the global change expedition.Global Biogeochemical Cycles,4, 445–458.

    Google Scholar 

  • Logager, T., Holcman, J., Sehested, K., Pedersen, T., 1992: Oxidation of ferrous ions by ozone in acidic solutions.Inorg. Chem.,31, 3523–3529.

    Google Scholar 

  • Martin, L. R., Hill, M. W., Tai, A. F., Good, T. W., 1990: The iron catalyzed oxidation of sulfur(IV) in aqueous solution: differing effects of organics at high and low pH.J. Geophys. Res.,96, 3085–3097.

    Google Scholar 

  • Matthijsen, J., Sedlak, D. L., 1995: Cloud model studies on the effect of Fe and Cu reactions on the oxidation of S(IV), (in preparation).

  • Matthijsen, J., Diederen, H. S. M. A., 1992: The effect of zonal averaging in global modelling of tropospheric ozone distributions. In: van Dop, H., Kallos, G. (eds.),Air Pollution Modelling and its Application IX. New York: Plenum Press.

    Google Scholar 

  • Millero, F. J., Sotolongo, S., 1989: The oxidation of Fe(II) with H2O2 in seawater.Geochim. Cosmochim. Acta,53, 1867–1873.

    Google Scholar 

  • Moffett, J. W., Zika, R. G., 1987: Reaction kinetics of hydrogen peroxide with copper and iron in seawater.Envir. Sci. Technol.,21, 804–810.

    Google Scholar 

  • Möller, D., Wieprecht, W., Acker, K., Mauersberger, G., 1993: Evidence for Ozone Destruction in Clouds. Fraunhofer Institute for Atmospheric Environmental Research, Air Chemistry, Berlin.

    Google Scholar 

  • Munger, J. W., Jacob, D. J., Walsman, J. M., Hoffmann, M. R., 1983: Fogwater chemistry in an urban atmosphere.J. Geophys. Res.,88, 5109–5121.

    Google Scholar 

  • Nicholls, S., Leighton, J., 1986: An observational study of the structure of stratiform cloud sheets. Part I: Structure.Quart. J. Roy. Meteor. Soc.,112, 431–460.

    Google Scholar 

  • Pandis, S. N., Seinfeld, J. H., 1989: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry.J. Geophys. Res.,94, 1105–1126.

    Google Scholar 

  • Piechowski, M. von, 1991: Der Einfluss von Kupferionen auf die Redoxchemie des Atmosphärischen Wassers. Kinetische Untersuchungen, Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland.

    Google Scholar 

  • Piechowski, M. von, Nauser, T., Hoigné, J., Bühler, R., 1993: O 2 decay catalyzed by Cu2+ and Cu+ ions in aqueous solutions: a pulse radiolysis study for atmospheric chemistry.Ber. Bunsenges. Phys. Chem.,6, 762–771.

    Google Scholar 

  • Ross, H. B., 1990: Trace metal wet deposition in Sweden: insight gained from daily wet only collection.Atmos. Environ.,24A, 1929–1938.

    Google Scholar 

  • Rush, J. D., Bielski, B. H. J., 1985: Pulse radiolysis studies of the reactions of HO2/O 2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction.J. Phys. Chem.,89, 5062–5066.

    Google Scholar 

  • Sander, R., Lelieveld, J. Crutzen, P. J., 1994: Modelling the nighttime nitrogen and sulfur chemistry in size-resolved droplets of an orographic cloud.J. Atmos Chem. (submitted).

  • Schwartz, S. E., 1986: In: Jaeschke, W. (ed.)Chemistry of Multiphase Atmospheric Systems. Berlin, Springer, pp. 415–471.

    Google Scholar 

  • Sedlak, D. L., Hoigné, J., 1993: The role of copper and oxalate in the redox cycling of iron in atmospheric waters.Atmos. Environ.,27A, 2173–2185.

    Google Scholar 

  • Sedlak, D. L., Hoigné, J., 1994: The oxidation of S(IV) in atmospheric water by photooxidants and iron in the presence of copper.Environ. Sci. Technol. (submitted).

  • Sedlak, D. L., David, M. M. Hoigné, J., 1994: The chemistry of iron and copper in cloudwater at Great, Dunn Fell, U.K. (In preparation).

  • Sehested, K., Holcman, J., Hart, E. J., 1983: Rate constants for the reactions of e aq, O 2 and H with ozone in aqueous solution.J. Phys. Chem.,87, 1951–1954.

    Google Scholar 

  • Seinfeld, J. H., 1986:Atmospheric Chemistry and Physics of Air Pollution. Wiley Interscience Publication. New York: John Wiley, pp. 220.

    Google Scholar 

  • Sharma, V. K., Millero, F. J., 1988: The oxidation of Copper(I) in seawater.Environ. Sci. Technol.,22, 768–771.

    Google Scholar 

  • Staehelin, J., Buhler, R. E., Hoigné, J., 1984: Ozone decomposition in water studied by pulse radiolysis 2. OH and HO4 as chain intermediates.J. Phys. Chem.,88, 5999–6004.

    Google Scholar 

  • Stockwell, W. R., Middleton, P., Chang, J. S., Tang, X., 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modelling.J. Geophys. Res.,95/D10, 16343–16367.

    Google Scholar 

  • Thomas, J. K., 1965: Rates of reaction of the hydroxyl radical.Trans. Farad. Soc.,61, 702–707.

    Google Scholar 

  • Trainer, M., Buhr, M. P., Curran, C. M., Fehsenfed, F. C., Hsie, E. Y., Liu, S. C., Norton, R. B., Parrish, D. D., Williams, E. J., Gandrud, B. W., Ridley, B. A., Shetter, J. D., Allwine, E. J., Westberg, H. H., 1991: Observations and modelling of the reactive nitrogen photochemistry at a rural site.J. Geophys. Res.,96, 3045–3063.

    Google Scholar 

  • Walcek, C. J., Hong-Hsee Yuan, Stockwell, W. R., 1993: The Influence of Heterogeneous Atmospheric Chemical Reactions on the Formation of Ozone in Polluted Air, Presented at 86th Annual Meeting & Exhibition, Denver, Colorado, June 13–18.

  • Warneck, P., 1992: Chemistry and photochemistry in atmospheric water drops.Ber. Bunsenges. Phys. Chem.,96, 454–460.

    Google Scholar 

  • Warneck, P., 1988:Chemistry of the Natural Atmosphere New York: Academic Press, pp 334–339 Int. Geophysics Series,41.

    Google Scholar 

  • Weele, M. van, Duynkerke, P. G., 1993: Effect of clouds on photo-dissociation of NO2: observations and modelling.J. Atmos. Chem.,16, 231–255.

    Google Scholar 

  • Weinstein-Lloyd, J., Schwartz, S. E., 1992: Free-radical reactions in cloudwater: the role of transition metals in hydrogen peroxide production and destruction. In: Schwartz, S. E., Slinn, W. G. N., (eds.),Precipitation Scavenging and Atmosphere-Surface Exchange, vol. 1. Washington D.C.: Hemisphere Publishing Corporation, pp. 161–175.

    Google Scholar 

  • Wilson, R. L., Greenstock, C. L., Adams, G. E., Wageman, R., Dorfman, L. M., 1971: The standardization of hydroxyl radical rate data from radiation chemistry.Int. J. Radiat. Phys. Chem.,3, 211–220.

    Google Scholar 

  • Zeller, R., Exner, M., Herrmann, H., 1990: Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K.J. Atmos. Chem.,10, 411–425.

    Google Scholar 

  • Zhuang, G., Duce, R. A., Kester, D. R., 1990: The dissolution of atmospheric iron in surface seawater in the open ocean.J. Geophys. Res.,95, 16207–16216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthijsen, J., Builtjes, P.J.H. & Sedlak, D.L. Cloud model experiments of the effect of iron and copper on tropospheric ozone under marine and continental conditions. Meteorl. Atmos. Phys. 57, 43–60 (1995). https://doi.org/10.1007/BF01044153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044153

Keywords

Navigation