Skip to main content
Log in

Mesoscale data assimilation and prediction of low stratus in the Alpine region

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A number of problems related to mesoscale numerical prediction of low stratus in the Alpine region are formulated, and addressed in a series of experiments for two wintertime cases. These problems include modelling aspects and issues of data assimilation which are relevant particularly in relation to the observation nudging technique. A focus is on the influence of orography.

A comparison of operational optimum interpolation, and nudging of routine rawinsonde and surface-level data reveals that nudging often yields better analyses and forecasts of low stratus, and notably of the sharp vertical temperature and humidity gradients. However, the humidity advection scheme of the model and, near steep terrain, particularly the horizontal diffusion along the model's σ-levels are identified to contribute to spurious vertical smoothing which can result in erroneous cloud dissipation. On occasions, forecasts succeeding a nudging period are more sensitive to this process due to the sharper initial vertical gradients.

Specific problems of representiveness arise when low-level rawinsonde information is spread laterally along the sloping σ-levels from low to high terrain. A new concept for σ-layer models is introduced by speading the observational information along isentropic surfaces, and this tends to improve the low stratus prediction over steep and even moderate orography. A partly successful attempt to take advantage of the steep Alpine orography is made by applying this concept to surface-level humidity data from a high-resolution network of Alpine surface stations which are distributed relatively uniformly in the vertical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., 1974: Data assimilation and initialization of hurricane prediction models.J. Atmos. Sci.,31, 702–719.

    Google Scholar 

  • Atkins, M. J., 1974: The objective analysis of relative humidity.Tellus,26, 663–671.

    Google Scholar 

  • Ballard, S. P., Golding, B. W., Smith, R. N. B., 1991: Mesoscale model experimental forecasts of the Haar of Northeast Scotland.Mon. Wea. Rev.,119, 2107–2123.

    Google Scholar 

  • Ballard, S. P., Jackson, S. D., Macpherson, B., 1994: Short-range forecasting of stratocumulus: Initialization v. prediction. ECMWF Workshop Proc. on ‘Parameterization of the Cloud Topped Boundary Layer’, 8–11 June 1993, 403–429.

  • Bao, R. M., Errico, J.-w., 1994: Sensitivity of forecasts and analyses to the observations in FDDA using the dynamical relaxation (nudging) method. Proc. of 10th AMS Conf. on NWP, Portland, 584–585.

  • Bell, R. S., Hammon, O., 1989: The sensitivity of fine-mesh rainfall and cloud forecasts to the initial specification of humidity.Meteorol. Mag.,118, 152–158.

    Google Scholar 

  • Benjamin, S. G., 1989: An isentropic meso-α-scale analysis system and its sensitivity to aircraft and surface observations.Mon. Wea. Rev.,117, 1586–1603.

    Google Scholar 

  • Benjamin, S. G., Seaman, N. L., 1985: A simple scheme for objective analysis in curved flow.Mon. Wea. Rev.,113, 1184–1198.

    Google Scholar 

  • Benjamin, S. G., Brewster, K. A., Brümmer, R., Jewitt, B. F., Schlatter, T. W., Smith, T. L., Stamus, P. A., 1991: An isentropic three-hourly data assimilation system using ACARS aircraft observations.Mon. Wea. Rev.,119, 888–906.

    Google Scholar 

  • Benjamin, S. G., Kim, D., Schlatter, T. W., 1995: The Rapid Update Cycle: A new mesoscale assimilation system in hybrid (Θ — σ) coordinates at the National Meteorological Center. WMO/TD-No. 651. Proc. of ‘Second WMO International Symposium on Assimilation of Observations in Meterology and Oceanography’. Tokyo, 13–14 March 1995, Vol. I, 337–342.

    Google Scholar 

  • Bergot, T., Guedalia, D., 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests.Mon. Wea. Rev.,122, 1218–1230.

    Google Scholar 

  • Binder, P., Schär, C. (eds.), 1995: Mesoscale Alpine Programme Design Proposal. Available from the Swiss Meteorological Institute.

  • Branscome, L. E., Douglas, D. A., Carpenter, R., 1994: Influence of drainage flows and surface processes on fog formation in a river valley. Proc. of 6th AMS Conf. on Mesoscale Processes, Portland, 560–561.

  • Brown, R., Roach, W. T., 1976: The physics of radiation fog: II-A numerical study.Quart. J. Roy. Meteor. Soc.,102, 335–354.

    Google Scholar 

  • Buchhold, M., Paul, G., 1995: The regional and high-resolution data assimilation systems at the DWD. WMO/TD-No. 665, Research Activities in Atmospheric and Oceanic Modelling. CAS/JSC Working Group on Numerical Experimentation, Report No. 21, Ed. A. Staniforth, 1.10–1.11.

    Google Scholar 

  • Clark, P., 1994: Case studies of fog in the UK Met Office mesoscale model. Proc. of 10th AMS Conf. on NWP, Portland, 15–17.

  • Courtier, P., 1994: Introduction to numerical weather prediction data assimilation methods. ECMWF Seminar Proc. on ‘Development in the Use of Statellite Data in Numerical Weather Prediction’, 6–10 Sept. 1993, 189–207.

  • Dastoor, A. P., 1994: Cloudiness parameterization and verification in a large-scale atmospheric model.Tellus,46A, 615–634.

    Google Scholar 

  • Davies, H. C., 1976: A lateral boundary formulation for multilevel prediction models.Quant. J. Roy. Meteor. Soc.,102, 405–418.

    Google Scholar 

  • Davies, H. C., Turner, R. E., 1977: Updating prediction models by dynamical relaxation: An examination of the technique.Quart. J. Roy. Meteor. Soc.,103, 225–245.

    Google Scholar 

  • Eigenwillig, N., Ungewitter, G., 1993: Contributions to an improved forecasting of fog in Southern Germany. Proc. on 1st European Conf. on Applications of Meteorology, Oxford, 27, 9.–1.10. 1993.

  • Fast, J. D., 1995: Mesoscale modeling and four-dimensional data assimilation in areas of highly complex terrain.J. Appl. Meteor.,34, 2762–2782.

    Google Scholar 

  • Golding, B. W., 1990: The Meteorological Office mesoscale model.Meteor. Mag.,119, 81–96.

    Google Scholar 

  • Golding, B. W., 1993: A study of the influence of terrain on fog development.Mon. Wea. Rev.,121, 2529–2541.

    Google Scholar 

  • Henmi, T., 1990: Assimilation of wind field over complex terrain. Proc. of 5th AMS Conf. on Mountain Meteorology, Boulder, 118–124.

  • Kvamstø, N. G., 1994: Cloudiness validation in the ECMWF model. ECMWF Workshop Proc. on ‘Parameterization of the Cloud Topped Boundary Layer’, 8–11 June 1993, 345–365.

  • Lanzinger, A., Steinacker, R., 1990: A fine mesh analysis scheme designed for mountainous terrain.Meteorol. Atmos. Phys.,43, 213–219.

    Google Scholar 

  • Leidner, S. M., Stauffer, D. R., Seaman, N. L., 1994: Highresolution forecasting in the California coastal zone using four-dimensional data assimilation. Proc. of 10th AMS Conf. on NWP, Portland, 528–530.

  • Lorenc, A. C., 1981: A global three-dimensional niultuvariate statistical interpolation scheme.Mon. Wea. Rev. 109, 701–721.

    Google Scholar 

  • Lorenc, A. C., Bell, R. S., Macpherson, B., 1991: The Meteorological Office analysis correction data assimilation scheme.Quart. J. Roy. Meteor. Soc.,117, 59–89.

    Google Scholar 

  • Lorenc, A. C., Barker, D., Bell, R. S., Macpherson, B., Maycock, A. J., 1996: On the use of radiosonde humidity observations in mid-latitude NWP.Meteorol. Atmos. Phys.,60, 3–17.

    Google Scholar 

  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Bound.-Layer Meteor.,17, 187–202.

    Google Scholar 

  • Macpherson, B., Wright, B. J., Hand, W. H., Maycock, A. J., 1996: The impact of MOPS moisture data in the U.K. Meteorological Office data assimilation scheme.Mon. Wea. Rev.,124, 1746–1766.

    Google Scholar 

  • Majewski, D., 1985: Balanced initial and boundary values for a limited area model.Contrib. Atmos. Phys.,58, 147–159.

    Google Scholar 

  • Majewski, D., 1991: The Europa-Model of the Deutscher Wetterdienst. ECMWF Seminar Proc. on ‘Numerical methods in atmospheric models’, Vol II, 9–13 Sept., 147–191.

    Google Scholar 

  • Maycock, A. J., Macpherson, B., 1994: Developments in mesoscale data assimilation at the UK Met. Office. Proc. of 10th AMS Conf. on NWP, Portland, 561–563.

  • Mellor, G. L., Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers.J. Atmos. Sci.,13, 1791–1806.

    Google Scholar 

  • Miller, P. A., Benjamin, S. G., 1992: A system for the hourly assimilation of surface observations in mountainous and flat terrain.Mon. Wea. Rev.,120, 2342–2359.

    Google Scholar 

  • Mills, G. A., Logan, L. W., 1994: Upgrades to the Australian limited area data assimilation system. Austral.Meteorol. Mag.,43, 167–180.

    Google Scholar 

  • Musson-Genon, L., 1987: Numerical simulation of a fog event with a one-dimensional boundary layer model.Mon. Wea. Rev.,115, 592–607.

    Google Scholar 

  • Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., Copeland, J. H., 1992: A comprehensive meteorological modeling system — RAMS.Meteorol. Atmos. Phys.,49, 69–91.

    Google Scholar 

  • Ritter, B., Geleyn, J.-F., 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations.Mon. Wea. Rev.,120, 303–325.

    Google Scholar 

  • Roach, W. T., 1994: Back to basics: Fog: Part 1 — Definitions and basic physics.Weather,49, 411–415.

    Google Scholar 

  • Roach, W. T., 1995: Back to basics: Fog: Part 2—The formation and dissipation of land fog.Weather,50, 7–11.

    Google Scholar 

  • Roach, W. T., Brown, R., Caughey, S. J., Crease, B. A., Slingo, A., 1982: A field study of nocturnal stratocumulus: I. Mean structure and budgets.Quart. J. Roy. Meteor. Soc.,108, 103–123.

    Google Scholar 

  • Schraff, C. H., 1996: Data assimilation and mesoscale weather prediction: A study with a forecast model for the Alpine region. PhD dissertation No. 11627, Federal Institute of Technology, Zürich. Available as ‘publication’ No. 56 from the Swiss Meteorological Institute.

    Google Scholar 

  • Schrodin, R., (ed.) 1995:Dokumentation des EM/DM-Systems. Available from the Deutscher Wetterdientst, Research Dept.

  • Seaman, N. L., Stauffer, D. R., Lario-Gibbs, A. M., 1995: A multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: Modeling design and basic performance characterisics.J. Appl. Meteor.,34, 1739–1761.

    Google Scholar 

  • Shaw, D. B., Lönnberg, P., Hollingsworth, A., Undén, P., 1987: The 1984/1985 revisions of the ECMWF mass and wind field analysis.Quart. J. Roy. Meteor. Soc.,113, 553–566.

    Google Scholar 

  • Spero, T. L., Seaman, N. L., Stauffer, D. R., 1994: Structureweighted observation nudging for dynamic initialization in the Penn State/NCAR mesoscale model. Proc. of 10th AMS Conf. on NWP, Portland, 575–577.

  • Staufer, D. R., Seaman, N. L., 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data.Mon. Wea. Rev.,118, 1250–1277.

    Google Scholar 

  • Stauffer, D. R., Seaman, N. L., Binkowski, F. S., 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Effects of data assimilation within the planetary boundary layer.Mon. Wea. Rev.,119, 734–754.

    Google Scholar 

  • Stauffer, D. R., Bao, J.-W., 1993: Optimal determination of nudging coefficients using the adjoint equants.Tellus,45A, 358–369.

    Google Scholar 

  • Stauffer, D. R., Seaman, N. L., 1994: Multiscale four-dimensional data assimilation.J. Appl. Meteor.,33, 416–434.

    Google Scholar 

  • Stensurd, D. J., Fritsch, J. M., 1994: Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a mesoscale initial condition.Mon. Wea. Rev.,122, 2068–2083.

    Google Scholar 

  • Temperton, C., 1988: Implicit normal mode initilization.Mon. Wea. Rev.,116, 1013–1031.

    Google Scholar 

  • Vrhovec, T., 1990: Analysis of mesometeorological temperature fields.Meteorol. Atmos. Phys.,43, 235–240.

    Google Scholar 

  • Wade, C. G., Schwartz, B., 1993: Radiosonde humidity observations near saturation. Proc. of 8th Symposium on Meteorological Observations and Instrumentation, Anaheim, 44–48.

  • Wang, W., Warner, T. T., 1988: Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a measoscale-model precipitation forecast: A case study.Mon. Wea. Rev.,116, 2593–2613.

    Google Scholar 

  • Wanner, H., 1979:Zur Bildung, Verteilung und Vorhersage winterlicher Nebel im Querschnitt Jura-Alpen. Geographica Bernensia 7.

  • Warner, T. T., Kuo, Y-H., Doyle, J. D., Dudhia, J., Stauffer, D. R., Seaman, N. L., 1992: Nonhydrostatic, mesobeta-scale, real-data simulation with the Penn State University/National Center for Atmospheric Research mesoscale model.Meteorol. Atmos. Phys.,49, 209–227.

    Google Scholar 

  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys. Part I: Observations.J. Appl. Meteor.,21, 270–289.

    Google Scholar 

  • Woodage, M. J., 1985: The preparation of data for the Meteorological Office 15-level forecast model.Meteorol. Mag.,114, 1–13.

    Google Scholar 

  • Working Group Report, 1994: Parameterization in forecast and climate models. ECMWF Workshop Proc. on ‘Parameterization of the Cloud Topped Boundary Layer’, 8–11 June 1993, Working Group 3, 15–20.

  • Wright, B. J., Golding, B., 1990: The Interactive Mesoscale Initialization.Meteorol. Mag.,119, 234–244.

    Google Scholar 

  • Wright, B. J., Hand, W. H., Macpherson, B., 1994: Assimilation of satellite data for mesoscale analysis. ECMWF Seminar Proc. on ‘Developments in the Use of Satellite Data in Numerical Weather Prediction’, Reading, 6.–10. Sept. 1993, 111–128.

  • Zou, X., Kuo, Y.-H., Guo, Y.-R., 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model.Mon. Wea. Rev.,123, 2229–2249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 19 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schraff, C.H. Mesoscale data assimilation and prediction of low stratus in the Alpine region. Meteorl. Atmos. Phys. 64, 21–50 (1997). https://doi.org/10.1007/BF01044128

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044128

Keywords

Navigation