Skip to main content
Log in

A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The motion of an idealized vortex near a large-scale mountain range is examined by numerically integrating the single-layer shallow-water equations on an equatorial beta plane. Modification of the asymmetric circulation by divergent vorticity generation as the air is forced across the ridge greatly affects the motion of the vortex. Attention is focused on the role of the vortex structure, the mountainrange width and orientation, and the stratification of the model atmosphere in influencing the motion of the vortex. A scale analysis is used to explain the sensitivity of the vortex track to changes in the model's external parameters. The sensitivity of the model vortex track to the slope and orientation of the mountain range is used to help explain some features of the observed tracks of hurricanes that make landfall on the east coast of Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Arakawa, A., Lamb, V. R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model.Methods in Computational Physics, Vol. 17, Academic Press, 174–265, 337 pp.

    Google Scholar 

  • Baines, P. G., 1987. Upstream blocking and airflow over mountains.Ann. Rev. Fluid Mech.,19, 75–97.

    Google Scholar 

  • Baines, P. G., Davies, P. A., 1980. Laboratory studies of topographic effects in rotating and/or stratified fluids. InOrographic Effects in Planetary Flows GARP Publ. No. 23, pp. 233–299.

  • Bender, M. A., Tuleya, R. E., Kurihara, Y., 1985: A numerical study of island terrain on tropical cyclones.Mon. Wea. Rev.,115, 130–155.

    Google Scholar 

  • Bender, M. A., Tuleya, R. E., Kurihara, Y., 1985. A numerical study of the effect of a mountain range on a landfalling tropical cyclones.Mon. Wea. Rev.,113, 567–582.

    Google Scholar 

  • Brand, S., Blelloch, J. W., 1973. Changes in the characteristics of tropical cyclones crossing the island of Taiwan.Mon. Wea. Rev.,102, 104–109.

    Google Scholar 

  • Chang, S. W., 1982. The orographic effects induced by an island mountain range on propagating tropical cyclones.Mon. Wea. Rev.,110, 1255–1270.

    Google Scholar 

  • DeMaria, M., 1985: Tropical cyclone motion in a nondivergent barotropic model.Mon. Wea. Rev.,113, 1199–1210.

    Google Scholar 

  • Drazin, P. G., 1961: On the steady flow of a fluid of variable density past an obstacle.Tellus,13, 239–251.

    Google Scholar 

  • Foirino, M., Elsberry, R. L., 1989: Some aspects of vortex structure related to tropical cyclone motion.J. Atmos. Sci.,46, 975–900.

    Google Scholar 

  • Haltiner, G. J., Williams, R. T., 1980:Numerical Prediction and Dynamic Meteorology, 2nd edn. Wiley, 477 pp.

  • Houghton, D. D., Kasahara, A., 1968: Nonlinear shallow fluid over an isolated ridge.Commun. Pure Appl. Math.,21, 1–23.

    Google Scholar 

  • Kasahara, A., Platzman, G. W., 1963: Interaction of a hurricane with the steering flow and its effect upon the hurricane trajectory.Tellus,15, 321–335.

    Google Scholar 

  • Parrett, C. A., Cullen M. J. P., 1984: Simulation of hydraulic jumps in the presence of rotation and mountains.Quart. J. Roy. Meteor. Soc.,110, 147–165.

    Google Scholar 

  • Reeder, M. J., Smith, R. K., Lord, S. J., 1991: The detection of flow asymmetries in the tropical cyclone environment.Mon. Wea. Rev.,119, 848–854.

    Google Scholar 

  • Shapiro, L. J., Ooyama, K. V., 1991: Barotropic vortex evolution on a beta plane.J. Atmos. Sci.,47, 170–187.

    Google Scholar 

  • Smith, R. K., Ulrich, W., Dietachmayer, G., 1990: A numerical study of tropical cyclone motion using a barotropic model. I: The role of vortex asymmetries.Quart J. Roy. Meteor. Soc.,116, 337–362.

    Google Scholar 

  • Smith, R. K., Ulrich, W., 1993: Vortex motion in relation to the absolute vorticity gradient of the vortex environment.Quart. J. Roy Meteor. Soc.,119, 207–215.

    Google Scholar 

  • Williams, R. T., Hori, A. M., 1970. Formation of hydraulic jumps in a rotating system.J. Geophys. Res.,75, 2813–2821.

    Google Scholar 

  • Wu, T. Y., Wang, S. T., 1983: Circulation and track changes of tropical cyclones encountering the Central Mountain Range in Taiwan: Field observations and laboratory experiments.Proc CCNAA-AIT Joint Seminar on Tropical and Monsoon Meteorology.

  • Yeh, T. C., Elsberry, R. L., 1993: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections.Mon. Wea. Rev.,121, 3193–3212.

    Google Scholar 

  • Zehnder, J. A., 1993a: The influence of large-scale topography, on barotropic vortex motion.J. Atmos. Sci.,50, 2519–2532.

    Google Scholar 

  • Zehnder, J. A., 1993b: The effect of topography on tropical cyclone landfall in Mexico. 20th conference on Hurricanes and Tropical Meterology, American Meteorological Society.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 14 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehnder, J.A., Reeder, M.J. A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre. Meteorl. Atmos. Phys. 64, 1–19 (1997). https://doi.org/10.1007/BF01044127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044127

Keywords

Navigation