Surveys in Geophysics

, Volume 14, Issue 1, pp 1–29 | Cite as

The axial momentum balance of Earth and its fluid envelope

  • Richard D. Rosen
Article

Abstract

The emergence of greatly improved data sets over the past decade has heightened awareness of the close relationship between changes in the axial component of the angular momentum of the atmosphere and that of the solid Earth, the latter being reflected in small, though detectable, changes in the planet's rate of rotation. Changes in the large-scale wind field, and hence in atmospheric angular momentum, on intraseasonal through interannual time scales can be associated with a number of identifiable meteorological phenomena, whose further study has been given new impetus by the discovery of their signals in Earth's rotation. Future advances in the subject are apt to occur in connection with new data sets that will help address questions remaining about rapid changes in Earth rotation and the torques responsible for the momentum changes. Also in the coming decade, both new data and modeling approaches should help clarify the role of the oceanic portion of Earth's fluid envelope in the planetary momentum balance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. R. and Rosen, R. D.: 1983, ‘The Latitude-Height Structure of 40–50 Day Variations in Atmospheric Angular Momentum’,J. Atmos. Sci. 40, 1584–1591.Google Scholar
  2. Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. A.: 1983, ‘Atmospheric Angular Momentum Fluctuations, Length-of-Day Changes and Polar Motion’,Proc. R. Soc. London, Ser. A 387, 31–73.Google Scholar
  3. Bell, M. J., Hide, R., and Sakellarides, G.: 1991, ‘Atmospheric Angular Momentum Forecasts as Novel Tests of Global Numerical Weather Prediction Models’,Phil. Trans. R. Soc. Lond. A334, 55–92.Google Scholar
  4. Benedict, W. L. and Haney, R. L.: 1988, ‘Contribution of Tropical Winds to Subseasonal Fluctuations in Atmospheric Angular Momentum and Length of Day’,J. Geophys. Res. 93, 15973–15978.Google Scholar
  5. Bengtsson, L.: 1991, ‘Advances and Prospects in Numerical Weather Prediction’,Q. J. R. Meteorol. Soc. 117, 855–902.Google Scholar
  6. Bergman, K.: 1979, ‘Multivariate Analysis System of Temperature and Winds Using Optimum Interpolation’,Mon. Wea. Rev. 107, 1423–1444.Google Scholar
  7. Boer, G. J.: 1990, ‘Earth-Atmosphere Exchange of Angular Momentum Simulated in a General Circulation Model and Implications for the Length of Day’,J. Geophys. Res. 94, 5511–5531.Google Scholar
  8. Brosche, P. and Sundermann, J.: 1985, ‘The Antarctic Circumpolar Current and Its Influence on the Earth's Rotation’,Deutsche Hydrographische Zeitschrift 38, 1–6.Google Scholar
  9. Carter, W. E., Robertson, D. S., Pettey, J. E., Tapley, B. D., Schutz, B. E., Eanes, R. J., and Lufeng, M.: 1984, ‘Variations in the Rotation of the Earth’,Science 224, 957–961.Google Scholar
  10. Chao, B. F.: 1988a, ‘Correlation of Interannual Length-of-Day Variation with El Niño/Southern Oscillation, 1972–1986’,J. Geophys. Res. 93, 7709–7715.Google Scholar
  11. Chao, B. F.: 1988b, ‘Excitation of the Earth's Polar Motion Due to Mass Variations in Major Hydrological Reservoirs’,J. Geophys. Res. 93, 13811–13819.Google Scholar
  12. Chao, B. F.: 1989, ‘Length-of-Day Variations Caused by El Niño-Southern Oscillation and Quasibiennial Oscillation’,Science 243, 923–925.Google Scholar
  13. Christodoulidis, D. C., Smith, D. E., Williamson, R. G., and Klosko, S. M.: 1988, ‘Observed Tidal Braking in the Earth/Moon/Sun System’,J. Geophys. Res. 93, 6216–6236.Google Scholar
  14. Christou, N.T.: 1990, ‘On the Space-Time Ocean Current Variability and its Effects on the Length-of-Day’, Ph.D. dissertation, Department of Surveying Engineering Technical Report No. 148, University of New Brunswick, Fredericton, New Brunswick, Canada, 333 pp.Google Scholar
  15. Clark, T. A., Ryan, J. W., and Baver, K. D.: 1990, ‘ERDE: High Resolution Observations of Earth Orientation Parameters by Very Long Baseline Interferometry’(abs.),Eos Trans. AGU 71, 1271.Google Scholar
  16. Cohen, S. C. and Smith, D. E.: 1985, ‘LAGEOS Scientific Results: Introduction’,J. Geophys. Res. 90, 9217–9220.Google Scholar
  17. Daley, R.: 1991,Atmospheric Data Analysis, Cambridge University Press, Cambridge.Google Scholar
  18. Degnan, J. J.: 1985, ‘Satellite Laser Ranging: Current Status and Future Prospects’,IEEE Trans. Geosci. Remote Sensing GE-23, 398–413.Google Scholar
  19. Dickey, J. O.: 1991, ‘High Time Resolution Measurements of Earth Rotation’, inProc. Chapman Conf. on Geodetic VLBI: Monitoring Global Change, NOAA Tech. Rep. NOS 137 NGS 49, National Geodetic Information Branch, NOS/NOAA, Rockville, 259–261.Google Scholar
  20. Dickey, J. O., Newhall, X. X., and Williams, J. G.: 1985, ‘Earth Orientation from Lunar Laser Ranging and an Error Analysis of Polar Motion Services’,J. Geophys. Res. 90, 9353–9362.Google Scholar
  21. Dickey, J. O., Ghil, M., and Marcus, S. L.: 1991, ‘Extratropical Aspects of the 40–50 Day Oscillation in Length-of-Day and Atmospheric Angular Momentum’,J. Geophys. Res. 96, 22643–22658.Google Scholar
  22. Dickey, J. O., Marcus, S. L., and Hide, R.: 1992a, ‘Global Propagation of Interannual Fluctuations in Atmospheric Angular Momentum’,Nature 357, 484–488.Google Scholar
  23. Dickey, J. O., Marcus, S. L., Steppe, J. A., and Hide, R.: 1992b, ‘The Earth's Angular Momentum Budget on Subseasonal Time Scales’,Science 255, 321–324.Google Scholar
  24. Eubanks, T. M., Steppe, J. A., Dickey, J. O., and Callahan, P. S.: 1985, ‘A Spectral Analysis of the Earth's Angular Momentum Budget’,J. Geophys. Res. 90, 5385–5404.Google Scholar
  25. Feissel, M. and Nitschelm, C.: 1985, ‘Time-dependent Aspects of the Atmosphere Driven Fluctuations in the Duration of the Day’,Ann. Geophys. 3, 181–186.Google Scholar
  26. Gutzler, D. S. and Ponte, R. M.: 1990, ‘Exchange of Momentum Among Atmosphere, Ocean, and Solid Earth Associated with the Madden-Julian Oscillation’,J. Geophys. Res. 95, 18679–18686.Google Scholar
  27. Herring, T. A.: 1990, ‘Geodetic Results from the October 1989 Extended R&D VLBI Experiment’(abs.),Eos Trans. AGU 71, 1271.Google Scholar
  28. Herring, T. A., Dong, D., and King, R. W.: 1991, ‘Sub-milliarcsecond Determination of Pole Position Using Global Positioning System Data’,Geophys. Res. Lett. 18, 1893–1896.Google Scholar
  29. Hide, R.: 1986, ‘Presidential Address: The Earth's Differential Rotation’,Q. J. R. Astron. Soc. 27, 3–20.Google Scholar
  30. Hide, R. and Dickey, J. O.: 1991, ‘Earth's Variable Rotation’,Science 253, 629–637.Google Scholar
  31. Hide, R., Birch, N. T., Morrison, L. V., Shea, D. J., and White, A. A.: 1980, ‘Atmospheric Angular Momentum Fluctuations and Changes in the Length of Day’,Nature 286, 114–117.Google Scholar
  32. Jault, D. and LeMouel, J.-L.: 1990, ‘Core-Mantle Boundary Shape: Constraints Inferred from the Pressure Torque Acting between the Core and the Mantle’,Geophys. J. Int. 101, 233–241.Google Scholar
  33. Kalnay, E., Kanamitsu, M., and Baker, W. E.: 1990, ‘Global Numerical Weather Prediction at the National Meteorological Center’,Bull. Amer. Meteor. Soc. 71, 1410–1428.Google Scholar
  34. Killworth, P. D., Stainforth, D., Webb, D. J., and Paterson, S. M.: 1991, ‘The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model’,J. Phys. Oceanogr. 21, 1333–1348.Google Scholar
  35. Lambeck, K.: 1980,The Earth's Variable Rotation, Cambridge University Press, Cambridge.Google Scholar
  36. Lambeck, K. and Hopgood, P.: 1982, ‘The Earth's Rotation and Atmospheric Circulation: 1958–1980’,Geophys. J. R. Astron. Soc. 71, 581–587.Google Scholar
  37. Langley, R. B., King, R. W., Shapiro, I. I., Rosen, R. D., and Salstein, D.A.: 1981, ‘Atmospheric Angular Momentum and the Length of Day: A Common Fluctuation with a Period Near 50 Days’,Nature 294, 730–732.Google Scholar
  38. Lau, K.-M., Kang, I.-S., and Sheu, P.J.: 1989, ‘Principal Modes of Intraseasonal Variations in Atmospheric Angular Momentum and Tropical Convection’,J. Geophys. Res. 94, 6319–6332.Google Scholar
  39. Madden, R. A.: 1987, ‘Relationships Between Changes in the Length of Day and the 40- to 50-Day Oscillation in the Tropics’,J. Geophys. Res. 92, 8391–8399.Google Scholar
  40. Madden, R. A.: 1988, ‘Large Intraseasonal Variations in Wind Stress Over the Tropical Pacific’,J. Geophys. Res. 93, 5333–5340.Google Scholar
  41. Madden, R. A. and Julian, P. R.: 1971, ‘Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific’,J. Atmos. Sci. 28, 702–708.Google Scholar
  42. Morabito, D. D., Eubanks, T. M., and Steppe, J. A.: 1988, ‘Kalman Filtering of Earth Orientation Changes’, in A. K. Babcock and G. A. Wilkins (eds.),The Earth's Rotation and Reference Frames for Geodesy and Geodynamics, Kluwer Academic, Dordrecht, Netherlands, 257–267.Google Scholar
  43. Morgan, P. J., King, R. W., and Shapiro, I. I.: 1985, ‘Length of Day and Atmospheric Angular Momentum: A Comparison for 1981–1983’,J. Geophys. Res. 90, 12645–12652.Google Scholar
  44. Munk, W. H. and Miller, R. L.: 1950, ‘Variations in the Earth's Angular Velocity Resulting from Fluctuations in Atmospheric and Oceanic Circulation’,Tellus 2, 93–101.Google Scholar
  45. Munk, W. H. and MacDonald, G. J. F.: 1960,The Rotation of the Earth, Cambridge University Press, Cambridge.Google Scholar
  46. Naito, I. and Kikuchi, N.: 1990, ‘A Seasonal Budget of the Earth's Axial Angular Momentum’,Geophys. Res. Lett. 17, 631–634.Google Scholar
  47. Newton, C. W.: 1971a, ‘Mountain Torques in the Global Angular Momentum Balance’,J. Atmos. Sci. 28, 623–628.Google Scholar
  48. Newton, C. W.: 1971b, ‘Global Angular Momentum Balance: Earth Torques and Atmospheric Fluxes’,J. Atmos. Sci. 28, 1329–1341.Google Scholar
  49. Oort, A. H.: 1983,Global Atmospheric Circulation Statistics, 1958–1973, NOAA Prof. Pap. 14, U.S. Govt. Printing Office, Washington, DC. [NTIS PB8-4-129717].Google Scholar
  50. Oort, A. H.: 1985, ‘Balance Conditions in the Earth's Climate System’,Advances in Geophysics 28A, 75–98.Google Scholar
  51. Oort, A. H.: 1989, ‘Angular Momentum Cycle in the Atmosphere-Ocean-Solid Earth System’,Bull. Amer. Meteor. Soc. 70, 1231–1242.Google Scholar
  52. Penland, C., Ghil, M., and Weickmann, K. M.: 1991, ‘Adaptive Filtering and Maximum Entropy Spectra with Application to Changes in Atmospheric Angular Momentum’,J. Geophys. Res. 96, 22659–22671.Google Scholar
  53. Ponte, R. M.: 1990, ‘Barotropic Motions and the Exchange of Angular Momentum Between the Oceans and Solid Earth’,J. Geophys. Res. 95, 11369–11374.Google Scholar
  54. Ponte, R. M. and Gutzler, D. S.: 1991, ‘The Madden-Julian Oscillation and the Angular Momentum Balance in a Barotropic Ocean Model’,J. Geophys. Res. 96, 835–842.Google Scholar
  55. Ponte, R. M. and Gutzler, D. S.: 1992, ‘40–60 Day Oscillations in the Western Tropical Pacific: Results from an Eddy-Resolving Global Ocean Model’,Geophys. Res. Lett. 19, 1475–1478.Google Scholar
  56. Ponte, R. M., Salstein, D. A., and Rosen, R. D.: 1991, ‘Sea Level Response to Pressure Forcing in a Barotropic Numerical Model’,J. Phys. Oceanogr. 21, 1043–1057.Google Scholar
  57. Randel, W. J.: 1992,Global Atmospheric Circulation Statistics, 1000-1mb, NCAR Tech. Note NCAR/TN-366 + STR, Nat. Ctr. for Atmos. Res., Boulder.Google Scholar
  58. Robertson, D. S.: 1991, ‘Geophysical Applications of Very-Long-Baseline Interferometry’,Reviews of Modern Physics 63, 899–918.Google Scholar
  59. Robertson, D. S., Carter, W. E., Campbell, J., and Schuh, H.: 1985, ‘Daily Earth Rotation Determinations from IRIS Very Long Baseline Interferometry’,Nature 316, 424–427.Google Scholar
  60. Rosen, R. D. and Gutowski, W. J.: 1992, ‘Response of Zonal Winds and Atmospheric Angular Momentum to a Doubling of CO2’,J. Climate (in press).Google Scholar
  61. Rosen, R. D. and Salstein, D. A.: 1983, ‘Variations in Atmospheric Angular Momentum on Global and Regional Scales and the Length of Day’,J. Geophys. Res. 88, 5451–5470.Google Scholar
  62. Rosen, R. D. and Salstein, D. A.: 1985, ‘Contribution of Stratospheric Winds to Annual and Semiannual Fluctuations in Atmospheric Angular Momentum and the Length of Day’,J. Geophys. Res. 90, 8033–8041.Google Scholar
  63. Rosen, R. D. and Salstein, D. A.: 1991, ‘Comment on “A Seasonal Budget of the Earth's Axial Angular Momentum” by Naito and Kikuchi’,Geophys. Res. Lett. 18, 1925–1926.Google Scholar
  64. Rosen, R. D., Salstein, D. A., Eubanks, T. M., Dickey, J. O., and Steppe, J. A.: 1984, ‘An El Niño Signal in Atmospheric Angular Momentum and Earth Rotation’,Science 225, 411–414.Google Scholar
  65. Rosen, R. D., Salstein, D. A., Miller, A. J., and Arpe, K.: 1987a, ‘Accuracy of Atmospheric Angular Momentum Estimates from Operational Analyses’,Mon. Wea. Rev. 115, 1627–1639.Google Scholar
  66. Rosen, R. D., Salstein, D. A., Nehrkorn, T., McCalla, M. R. P., Miller, A. J., Dickey, J. O., Eubanks, T. M., and Steppe, J. A.: 1987b, ‘Medium Range Numerical Forecasts of Atmospheric Angular Momentum’,Mon. Wea. Rev. 115, 2170–2175.Google Scholar
  67. Rosen, R. D., Salstein, D. A., and Wood, T. M.: 1990, ‘Discrepancies in the Earth-Atmosphere Angular Momentum Budget’,J. Geophys. Res. 95, 265–279.Google Scholar
  68. Rosen, R. D., Salstein, D. A., and Nehrkorn, T.: 1991, ‘Predictions of Zonal Wind and Angular Momentum by the NMC Medium-Range Forecast Model During 1985–89’,Mon. Wea. Rev. 119, 208–217.Google Scholar
  69. Rosen, R. D., Salstein, D. A., and Wood, T. M.: 1991, ‘Zonal Contributions to Global Momentum Variations on Intraseasonal Through Interannual Time Scales’,J. Geophys. Res. 96, 5145–5151.Google Scholar
  70. Salstein, D. A. and Rosen, R. D.: 1986, ‘Earth Rotation as a Proxy for Interannual Variability in Atmospheric Circulation, 1860-present’,J. Clim. Appl. Meteorol. 25, 1870–1877.Google Scholar
  71. Salstein, D. A. and Rosen, R. D.: 1989, ‘Regional Contributions to the Atmospheric Excitation of Rapid Polar Motions’,J. Geophys. Res. 94, 9971–9978.Google Scholar
  72. Salstein, D. A. and Rosen, R. D.: 1992, ‘Angular Momentum Variability Using Climate Data Sets’, inProc. 16th Annual Clim. Diag. Workshop, Climate Analysis Center/NMC, Washington, DC, 47–52.Google Scholar
  73. Salstein, D. A., Kann, D. M., Miller, A. J., and Rosen, R.D.: 1993, ‘The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: A Meteorological Data Center With Geodetic Applications’,Bull. Amer. Meteor. Soc. (in press).Google Scholar
  74. Semtner, A. J. and Chervin, R. M.: 1992, ‘Ocean General Circulation from a Global Eddy-Resolving Model’,J. Geophys. Res. 97, 5493–5550.Google Scholar
  75. Starr, V. P.: 1948, ‘An Essay on the General Circulation of the Earth's Atmosphere’,J. Meteorol. 5, 39–43.Google Scholar
  76. Stefanick, M.; 1982, ‘Interannual Atmospheric Angular Momentum Variability 1963–1973 and the Southern Oscillation’,J. Geophys. Res. 87, 428–432.Google Scholar
  77. Stephenson, F. R. and Morrison, L. V.: 1984, ‘Long-term Changes in the Rotation of the Earth: 700 B.C. to A.D. 1980’,Philos. Trans. R. Soc. London, Ser. A 313, 47–70.Google Scholar
  78. Swinbank, R.: 1985, ‘The Global Atmospheric Angular Momentum Balance Inferred from Analyses Made During the FGGE’,Quart. J. R. Met. Soc. 111, 977–992.Google Scholar
  79. Tapley, B. D., Schutz, B. E., and Eanes, R. J.: 1985, ‘Station Coordinates, Baselines, and Earth Rotation from LAGEOS Laser Ranging: 1976–1984’,J. Geophys. Res. 90, 9235–9248.Google Scholar
  80. Trenberth, K.E. and Olson, J. G.: 1988, ‘An Evaluation and Intercomparison of Global Analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts’,Bull. Amer. Meteor. Soc. 69, 1047–1057.Google Scholar
  81. Wahr, J. M.: 1988, ‘The Earth's Rotation’,Ann. Rev. Earth Planet. Sci. 16, 231–249.Google Scholar
  82. Wahr, J. M. and Oort, A. H.: 1984, ‘Friction- and Mountain-Torque Estimates from Global Atmospheric Data’,J. Atmos. Sci. 41, 190–204.Google Scholar
  83. Wei, M.-Y. and Schaack, T. K.: 1984, ‘Seasonal Distributions of Mountain Torques during FGGE’,J. Atmos. Sci. 41, 3032–3039.Google Scholar
  84. White, G. H.: 1991, ‘Mountain and Surface Stress Torques in NMC Analyses’, inProc. Chapman Conf. on Geodetic VLBI: Monitoring Global Change, NOAA Tech. Rep. NOS 137 NGS 49, National Geodetic Information Branch, NOS/NOAA, Rockville, 262–269.Google Scholar
  85. White, R. M.: 1949, ‘The Role of the Mountains in the Angular Momentum Balance of the Atmosphere’,J. Meteor. 6, 353–355.Google Scholar
  86. Widger, W. K: 1949, ‘A Study of the Flow of Angular Momentum in the Atmosphere’,J. Meteor. 6, 291–299.Google Scholar
  87. Wolf, W. L. and Smith, R. B.: 1987, ‘Length-of-Day Changes and Mountain Torque During El Niño’,J. Atmos. Sci. 44, 3656–3660.Google Scholar
  88. Wyrtki, K.: 1985, ‘Water Displacements in the Pacific and the Genesis of El Niño Cycles’,J. Geophys. Res. 90, 7129–7132.Google Scholar
  89. Yoder, C.F., Williams, J. G., and Parke, M. E.: 1981, ‘Tidal Variations of Earth Rotation’,J. Geophys. Res. 86, 881–891.Google Scholar
  90. Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J., and Tapley, B. D.: 1983, ‘Secular Variation of Earth's Gravitational Harmonic J2 Coefficient from Lageos and Non-Tidal Acceleration of Earth Rotation’,Nature 303, 757–762.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Richard D. Rosen
    • 1
  1. 1.Atmospheric and Environmental Research, Inc.CambridgeUSA

Personalised recommendations