Skip to main content
Log in

Dihydrogen complexes of the transition metals

  • TMC Literature Highlights-20
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The binding and activation of dihydrogen by simple transition metal complexes is of fundamental importance in processes as diverse as the homogeneous or heterogeneous hydrogenation of unsaturated organic molecules(1) and understanding how metalloenzymes such as nitrogenase(2) and the hydrogenases(3) work at the atomic level.

Simple consideration of the oxidative-addition of dihydrogen to a coordinatively-unsaturated complex {or its reverse (reductive-elimination)} reveals that the reactions are compelled to proceed via a dihydrogen complex as shown in Equation (1).

However until recently it was considered that the dihydrogen complex had only a fleeting existence. Although there had been some reports in the literature such as that by Ashworth and Singleton(4) that the formally RuIV trihydride, [RuH3(PMe2Ph2]+ was better formulated as the Ru11 species [RuH(H2)(PMe2Ph)2]+, these could not be substantiated. In 1984, though, Kubas showed that the apparently innocuous complex [WH2(CO)3(PPr i3 )2] contained the side-on bonded dihydrogen molecule, established unambiguously by x-ray, and neutron crystallography and spectroscopy(5). In this highlight the current status of dihydrogen complexes, their structure, identification and in particular their reactivity will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Halpern,J. Organometallic Chem.,200, 133 (1980).

    Google Scholar 

  2. W. H. Orme-Johnson,Ann. Rev. Biophys. Chem.,14, 419 (1985).

    Google Scholar 

  3. M. W. W. Adams, L. E. Mortenson and J.-S. Chen,Biochim. Biophys. Acta. 594, 105 (1981).

    Google Scholar 

  4. T. V. Ashworth and E. Singleton,J. Chem. Soc., Chem. Comm., 705 (1976).

  5. G. J. Kubas, R. R. Ryan, B. L. Swanson, P. J. Vergamini and H. J. Wasserman,J. Am. Chem. Soc.,106, 451 (1984).

    Google Scholar 

  6. J.-Y. Saillard and R. Hoffmann,J. Am. Chem. Soc.,106, 2006 (1984).

    Google Scholar 

  7. P. J. Hay,J. Am. Chem. Soc.,109, 705 (1987).

    Google Scholar 

  8. J. K. Burdett, J. R. Phillips, M. R. Pourian, M. Poliakoff, J. J. Turner and R. Upmacis,Inorg. Chem.,26, 3054 (1987).

    Google Scholar 

  9. H. H. Brintzinger,J. Organometallic Chem.,171, 337 (1979).

    Google Scholar 

  10. R. H. Morris, J. F. Sawyer, M. Shiralian and J. D. Zubowski,J. Am. Chem. Soc.,107, 5581 (1985).

    Google Scholar 

  11. G. J. Kubas, R. R. Ryan and D. A. Wrobleski,J. Am. Chem. Soc.,108, 1339 (1986).

    Google Scholar 

  12. T. Arliguie, B. Chaudret, R. H. Morris and A. Sella,Inorg. Chem.,27, 598 (1988).

    Google Scholar 

  13. C. Hampton, T. W. Dekleva, B. R. James and W. R. Cullen,Inorg. Chim. Acta,145, 165 (1988).

    Google Scholar 

  14. A. Choplin, B. Besson, L. D'Ornelas, R. Sanchez-Delgado and J.-M. Baset,J. Am. Chem. Soc.,110, 2783 (1988).

    Google Scholar 

  15. K. Vrieze and G. Van Koten,Inorg. Chim. Acta,100, 79 (1985).

    Google Scholar 

  16. G. J. Kubas,Acc. Chem. Res.,21, 120 (1988).

    Google Scholar 

  17. G. J. Kubas, C. J. Unkefer, B. I. Swanson and E. Fukushima,J. Am. Chem. Soc.,108 7000 (1986).

    Google Scholar 

  18. M. S. Chinn and D. M. Heinekey,J. Am. Chem. Soc.,109, 5865 (1987).

    Google Scholar 

  19. F. M. Conroy-Lewis and S. J. Simpson,J. Chem. Soc., Chem. Comm., 506 (1986).

  20. F. M. Conroy-Lewis and S. J. Simpson,J. Chem. Soc., Chem. Comm., 1675 (1987).

  21. C. Bianchini, C. Mealli, M. Peruzzini and F. Zanobini,J. Am. Chem. Soc.,109, 5548 (1987).

    Google Scholar 

  22. R. H. Crabtree and M. Lavin,J. Chem. Soc., Chem. Comm., 794 (1985).

  23. M. T. Bautista, K. A. Earl and R. H. Morris,Inorg. Chem.,27, 1124 (1988).

    Google Scholar 

  24. M. T. Bautista, K. A. Earl, R. H. Morris and A. Sella,J. Am. Chem. Soc.,109, 3780 (1987).

    Google Scholar 

  25. M. V. Baker, L. D. Field and D. J. Young,J. Chem. Soc., Chem. Comm., 546 (1988).

  26. B. D. Nageswara and L. R. Anders,Phys. Rev.,140, A112 (1965).

    Google Scholar 

  27. R. H. Crabtree and M. Lavin, {jtJ. Chem. Soc., Chem. Comm.}, 1661 (1985).

  28. R. H. Crabtree, M. Lavin and L. Bonneviot,J. Am. Chem. Soc.,108, 4032 (1987).

    Google Scholar 

  29. G. J. Kubas, R. R. Ryan and C. J. Unkefer,J. Am. Chem. Soc.,109, 8113 (1987).

    Google Scholar 

  30. R. H. Crabtree and D. G. Hamilton,J. Am. Chem. Soc.,108 3124 (1986).

    Google Scholar 

  31. X. L. R. Fontaine, E. H. Fowles and B. L. Shaw,J. Chem. Soc., Chem. Comm., 482 (1988).

  32. T. W. Dekleva, I. S. Thorburn and B. R. James,Inorg. Chim. Acta,100, 49 (1985).

    Google Scholar 

  33. M. T. Bautista, K. A. Earl, P. A. Maltby, R. H. Morris and A. Sella, submitted for publication, quoted in ref.

    Google Scholar 

  34. M. D. Curtis, L. G. Bell and W. M. Butler,Organometallics,4, 701 (1985).

    Google Scholar 

  35. J.-F. Reynoud, J.-C. Leblanc and C. Moise,Transition Met. Chem. 10, 291 (1985).

    Google Scholar 

  36. R. L. Sweany,J. Am. Chem. Soc.,107, 2374 (1985).

    Google Scholar 

  37. R. L. Sweany,J. Am. Chem. Soc.,108, 6986 (1986).

    Google Scholar 

  38. R. K. Upmacis, G. E. Gadd, M. Poliakoff, M. B. Simpson, J. J. Turner, R. Whymann and A. F. Simpson,J. Chem. Soc., Chem. Comm., 27 (1985).

  39. R. K. Upmacis, M. Poliakoff and J. J. Turner,J. Am. Chem. Soc.,108, 3645 (1986).

    Google Scholar 

  40. S. A. Jackson, R. K. Upmacis, M. Poliakoff, J. J. Turner, J. K. Burdett and F.-W. Grevels,J. Chem. Soc., Chem. Comm., 678 (1987).

  41. G. E. Gadd, R. K. Upmacis, M. Poliakoff and J. J. Turner,J. Chem. Soc.,108, 2547 (1986).

    Google Scholar 

  42. R. H. Morris, K. A. Earl, R. L. Luck, N. J. Lazarowych and A. Sella,Inorg. Chem.,26, 2674 (1987).

    Google Scholar 

  43. R. H. Crabtree,Inorg. Chim. Acta,125, L7 (1986).

    Google Scholar 

  44. R. A. Henderson,J. Chem. Soc., Chem. Comm., 1670 (1987).

  45. H. C. Clark and M. J. Hampden Smith,J. Am. Chem. Soc.,108, 3829 (1986).

    Google Scholar 

  46. D. L. Packett and W. C. Trogler,J. Am. Chem. Soc.,108, 5036 (1986).

    Google Scholar 

  47. R. A. Henderson, unpublished observations.

  48. D. G. Hamilton and R. H. Crabtree, quoted in ref.

    Google Scholar 

  49. R. H. Crabtree, G. G. Hlatky, C. P. Parnell B. E. Segmüller and R. J. Uriarte,Inorg. Chem.,23, 354 (1984).

    Google Scholar 

  50. S. P. Church, F.-W. Grevels, H. Hermann and K. Schaffner,J. Chem. Soc., Chem. Comm., 30 (1985).

  51. R. Ellis, R. A. Henderson, A. Hills and D. L. Hughes,J. Organomet. Chem.,333, C6 (1987).

    Google Scholar 

  52. S. P. Albracht,J. Recl. Trav. Chim. Pays-Bas,106, 173 (1987).

    Google Scholar 

  53. D. L. Packett and W. C. Trogler,Inorg. Chem.,27, 1768 (1988).

    Google Scholar 

  54. M. T. Bautista, K. A. Earl, P. A. Maltby and R. H. Morris,J. Am. Chem. Soc.,110, 4056 (1988).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, R. Dihydrogen complexes of the transition metals. Transition Met Chem 13, 474–480 (1988). https://doi.org/10.1007/BF01043716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01043716

Keywords

Navigation