Skip to main content
Log in

Free radical production by the red tide alga,Chattonella antiqua

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The red tide alga,Chattonella antiqua, was found to show a strong chemiluminescence, using luminol as the reagent, when exposed to ultraviolet irradiation. This luminescence was completely inhibited by ascorbate or catalase, suggesting that hydrogen peroxide was generated by the plankton. Red tide cells exposed to fish gill mucus from young yellowtail resulted in the release of a large number of mucocysts and a weak luminosity, and showed a strong reduction of cytochromec in the medium. Therefore, the discharge of mucocysts from the red tide, induced by the presence of gill mucus, may be accompanied by the release of active oxygen species. The active oxygen may be involved in depolymerization of mucus glycoproteins from the gill lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauchamp, C. &Fridovich, I. (1970) A mechanism for the production of ethylene from methional. The generation of the hydroxy radicals by xanthine oxidase.J. Biol. Chem. 245, 4641–6.

    Google Scholar 

  • Bray, R. C. &Cockle, S. A. (1974) Reduction and inactivation of superoxide dismutase by hydrogen peroxide.Biochem. J. 139, 43–8.

    Google Scholar 

  • Chance, B., Sies, H. &Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs.Physiol. Rev. 59, 527–605.

    Google Scholar 

  • Cooper, B., Creeth, M. &Donald, A. S. R. (1985) Studies of the limited degradation of mucus glycoproteins.Biochem. J. 228, 615–26.

    Google Scholar 

  • Doi, A., Hatase, O., Shimada, M., Murakami, T. H. &Okaichi, T. (1981) Ultrastructural changes in gill epithelia of a yellowtail,Seriola quinqueradiata, exposed to sea bloom.Cell. Str. Func. 6, 375–83.

    Google Scholar 

  • Gilbert, B. C., King, D. M. &Thomas, C. B. (1984) The oxidation of some polysaccharides by the hydroxyl radical: an e.s.r. investigation.Carbohydr. Res. 125, 217–35.

    Google Scholar 

  • Haber, F. &Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts.Proc. Roy. Soc. Lond. Ser. A. 147, 332–51.

    Google Scholar 

  • Hayami, M., Tsujimoto, H., Komuro, A., Hinuma, Y. &Fujiwara, K. (1984) Transmission of adult t-cell leukemia virus from lymphoid cells to non-lymphoid cells associated with cell membrane fusion.Gann 75, 99–102.

    Google Scholar 

  • McCord, J. M. (1974) Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase.Science 185, 529–31.

    Google Scholar 

  • McCord, J. M. &Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).J. Biol. Chem. 244, 6049–55.

    Google Scholar 

  • McCord, J. M., Keele, B. B. Jr. &Fridovich, I. (1971) An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase.Proc. Natl Acad. Sci. USA 68, 1024–7.

    Google Scholar 

  • Murray, H. W., Rubin, B. Y., Carriero, S. M., Harris, A. M. &Jaffee, E. A. (1985) Human mononuclear phagocyte antiprotozoal mechanisms: Oxygen-dependent vs oxygen-independent activity against intracellular toxoplasma gondii.J. Immunol. 134, 1982–8.

    Google Scholar 

  • Nakayama, T., Kaneko, M., Kodama, M. &Nagata, C. (1985) Cigarette smoke induces DNA single-strand breaks in human cells.Nature 314, 462–4.

    Google Scholar 

  • Roberts, C. R., Mort, J. S. &Roughley, P. J. (1987) Treatment of cartilage proteoglycan aggregate with hydrogen peroxide.Biochem. J. 247, 349–57.

    Google Scholar 

  • Shimada, M., Murakami, T. H., Doi, A., Abe, S., Okaichi, T. &Watanabe, M. (1982) A morphological and histochemical study on gill primary lamellae of the teleost,Seriola quinqueradiata, exposed to sea bloom.Acta Histochem. Cytochem. 15, 497–507.

    Google Scholar 

  • Shimada, M., Murakami, T. H., Imahayashi, T., Ozaki, H. S., Toyoshima, T. &Okaiche, T. (1983) Effects of sea bloom,Chattonella antiqua, on gill primary lamellae of the young yellowtail,Seriola quinqueradiata.Acta Histochem. Cytochem. 16, 232–44.

    Google Scholar 

  • Shimada, M., Shimono, R., Imahayashi, T., Ozaki, H. &Murakami, T. H. (1986) Diazo-reaction positive substance observed in the cortex ofChattonella antiqua.Histol. Histopath. 1, 327–33.

    Google Scholar 

  • Shimada, M., Shimono, R., Murakami, T. H., Yoshimatsu, S. & Ono, C. (1989) Red tide,Chattonella antiqua reduces cytochrome c from horse heart.Red tides: biology, environmental science, and toxicology (edited byT. Okaichi, D. M. Anderson & T. Nemoto) pp. 443–6.

  • Toyoshima, T., Ozaki, H. S., Shimada, M., Okaichi, T. &Murakami, T. H. (1985) Ultrastructural alterations on chloride cells of the yellowtail,Seriola quinqueradiata, following exposure to the red tide species,Chattonella antiqua.Marine Biology 88, 101–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M., Akagi, N., Nakai, Y. et al. Free radical production by the red tide alga,Chattonella antiqua . Histochem J 23, 361–365 (1991). https://doi.org/10.1007/BF01042181

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01042181

Keywords

Navigation