Skip to main content
Log in

Some new volatile compounds from the non-enzymic browning reaction of glucose-glutamic acid system

Einige neue flüchtige Verbindungen aus der nicht-enzymatischen Bräunungsreaktion des Glucose-Glutaminsäure-Systems

  • Originalarbeiten
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Zusammenfassung

Die flüchtigen Verbindungen aus der Maillardreaktion des Glucose-Glutaminsäure-Systems wurde mit Hilfe der Gaschromatographie/Massenspektrometrie analysiert. Von den 50 nachgewiesenen Peaks wurden 42 identifiziert: 2 Säuren, 2 Alkohole, 5 Carbonyle, 2 Ester, 4 Lactone, 17 Furane, 4 Pyrazine, 3 Pyrrole und 4 weitere provisorisch. Deca-2,4-dienal, 2-n-Pentylfluorat, 2-(2′-Furyl)-pyrazin, γ-Nonalacton, 2-(2′-Furyl)-5 oder -6-Methylpyrazin wurden bisher nicht in dem erhitzten Zucker-Aminosäuren-Bräunungssystem registriert. Die neue Verbindung 5-Formyloxymethyl-2-furfural ist anscheinend noch nicht in der chemischen Literatur festgestellt worden. Die Verbindung 5-Acetoxymethyl-2-furfural hat an ein Brot erinnerndes Aroma, während die 5-Formyloxymethyl-2-furfural-Verbindung ein sehr schwaches „süßlich-verbranntes” Aroma aufweist.

Summary

The volatile compounds from the Maillard reaction in the glucose - glutamic acid system were analysed by combined gas chromatography - mass spectrometry. Of the 50 peaks detected, 42 components comprising 2 acids, 2 alcohols, 5 carbonyls, 2 esters, 4 lactones, 17 furans, 4 pyrazines and 3 pyrroles were identified, four of which tentatively. Decadien 2,4-al, 2-n-pentyl furoate, 2-(2′-fury()-pyrazine. γ-nonalactone, 2-(2′-fury()-5- or 6-methylpyrazine were previously not reported to occur in heated sugar - amino acid browning systems. The new compound, 5-formyloxymethyl-2-furfural has apparently not yet been recorded in the chemical literature.

The compound 5-acetoxymethyl-2-furfural had an aroma close to that of bread whereas 5-formyloxymethyl-2-furfural exhibited a very faint sweet burnt aroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hodge JE (1953) J Agric Food Chem 1:928–943

    Google Scholar 

  2. Hodge JE (1967) In: Schultz HW, Day EA, Libbey LM (Eds), Symposium on foods: The chemistry and physiology of flavors. Avi Publ Co, Westport, Conn p 465

    Google Scholar 

  3. Hodge JE, Mills FD, Fisher BE (1972) Cereal Sci Today 17:34–40

    Google Scholar 

  4. Reynolds TM (1970) Food Technol Aust 22:610–619

    Google Scholar 

  5. Stewart TF (1967) BFMIRA Sci Tech Survey No 61, BFMIRA, Leatherhead, England

    Google Scholar 

  6. Waller GR, Feather MS (1983) The Maillard reaction in food and nutrition, ACS Symposium Series 215, American Chemical Society, Washington, DC pp 585

    Google Scholar 

  7. Ruckdeschel W (1914) Z Ges Brauw 37:430–432, 437-440

    Google Scholar 

  8. Barnes HM, Kaufman CW (1947) Ind Eng Chem 39:1167–1170

    Google Scholar 

  9. Herz WJ, Shallenberger RS (1960) Food Res 25:491–494

    Google Scholar 

  10. Kiely PJ, Nowlin AC, Moriarty JH (1960) Cereal Sci Today 5:273–274

    Google Scholar 

  11. Rothe M, Voigt I (1963) Nahrung 7:50–59

    Google Scholar 

  12. Kobayasi N, Fujimaki M (1965) Agric Biol Chem 29:1059–1060

    Google Scholar 

  13. Hunter IR, Walden MK, McFadden WH, Pence JW (1966) Cereal Sci Today 11:493–496, 500-501

    Google Scholar 

  14. Arroyo PT, Lillard DA (1970) J Food Sci 35:769–770

    Google Scholar 

  15. Rohan TA (1970) Food Technol 24:1217–1225

    Google Scholar 

  16. Shigematsu H, Kurata T, Kato H, Fujimaki M (1971) Agric Biol Chem 35:2097–2105

    Google Scholar 

  17. Kato S, Kurata T, Fujimaki M (1973) Agric Biol Chem 37:539–544

    Google Scholar 

  18. Hannan RS, Lea CH (1951) Nature 168:744–745

    Google Scholar 

  19. Lewin S (1957) Biochem J 65:30P

  20. El'Odé KE, Dornseifer TP, Keith ES, Powers JJ (1966) J Food Sci 31:351–358

    Google Scholar 

  21. Eichner K, Karel M (1972) J Agric Food Chem 20:218–223

    Google Scholar 

  22. Shibamoto T, Bernhard RA (1976) J Agric Food Chem 24:847–852

    Google Scholar 

  23. Devik OG (1967) Acta Chem Scand 21:2302–2303

    Google Scholar 

  24. Heyns K, Koch H (1971) Z Lebensm Unters Forsch 145:76–84

    Google Scholar 

  25. Berry SK, Gramshaw JW (1970) Unpublished results

  26. Cronin DA (1970) J Chromatogr 48:406–411

    Google Scholar 

  27. Cronin DA, Nursten HE, Woolfe ML (1972/73) Int J Mass Spectrom Ion Phys 10:47–61.

    Google Scholar 

  28. Pickard RH, Kenyon J, Hunter H (1923) J Chem Soc 123:1–14

    Google Scholar 

  29. Maga JA (1974) CRC Crit Rev Food Technol 5:55–142

    Google Scholar 

  30. Folkes DJ, Gramshaw JW (1977) J Food Technol 12:1–8

    Google Scholar 

  31. Friedel P, Krampl V, Radford T, Renner JA, Shephard WF, Gianturco MA (1971) J Agric Food Chem 19:530–532

    Google Scholar 

  32. Kinlin TE, Muralidhara R, Pittet AO, Sanderson A, Walradt JP (1972) J Agric Food Chem 20:1021–1028

    Google Scholar 

  33. Ferretti A, Flanagan VP (1973) J Agric Food Chem 21:35–37

    Google Scholar 

  34. Kato H, Fujimaki M (1972) Lebensm Wiss Technol 5:172–174

    Google Scholar 

  35. Scanlan RA, Libbey LM (1971) J Agric Food Chem 19:570–571

    Google Scholar 

  36. Shigematsu H, Kurata T, Kato H, Fujimaki M (1972) Agric Biol Chem 36:1631–1637

    Google Scholar 

  37. Hara T (1981) J Agric Chem Soc (Japan) 55:1069–1072; Chem Abs 96:102603Y (1982)

    Google Scholar 

  38. Seck S, Crouzet J (1981) J Food Sci 46:790–793

    Google Scholar 

  39. Milic BL, Piletic MV (1984) Food Chem 13:165–180

    Google Scholar 

  40. Fagerson IS (1969) J Agric Food Chem 17:747–750

    Google Scholar 

  41. Johnson RR, Alford ED, Kinzer GW (1969) J Agric Food Chem 17:22–24

    Google Scholar 

  42. Shimizu Y, Matsuto S, Mizunuma Y, Okada I (1970) J Food Sci Technol Jpn 17:385–400

    Google Scholar 

  43. Buttery RG, Seifert RM, Guadagni DG, Ling LC (1971) J Agric Food Chem 19:969–971

    Google Scholar 

  44. Ferretti A, Flanagan VP (1971) J Dairy Sci 54:1764–1768

    Google Scholar 

  45. Ferretti A, Flanagan VP (1971) J Dairy Sci 54:1769–1771

    Google Scholar 

  46. Popoff T, Theander O (1976) Acta Chem Scand Ser B 30:397–402

    Google Scholar 

  47. Tokitomo Y, Kobayashi A, Yamanishi T, Muraki S (1980) Proc Jpn Acad Ser B 56:452–456

    Google Scholar 

  48. Shaw PE, Tatum JH, Berry RE (1968) J Agric Food Chem 16:979–982

    Google Scholar 

  49. Blears MJ, Machell G, Richards GN (1957) Chem Ind (Lond): 1150–1151

  50. Berkenheim AM, Dankova TF (1939) J Gen Chem (USSR) 9:924–931; (1940) Chem Abs 34:368

    Google Scholar 

  51. Anet EFLJ (1964) Advan Carbohyd Chem 19:181–218

    Google Scholar 

  52. Dawes IW, Edwards RA (1966) Chem Ind (Lond): 2203

  53. Koehler PE, Mason ME, Newell JA (1969) J Agric Food Chem 17:393–396

    Google Scholar 

  54. Miller RE, Cantor SM (1952) J Am Chem Soc 74:5236–5237

    Google Scholar 

  55. Straten S van, Maarse H (1983) Volatile Compounds in Food: Qualitative Data, Edn 5. Central Institute for Nutrition and Food Research, TNO, Zeist, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Taken in part from the Ph. D. thesis of the Senior Author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, S.K., Gramshaw, J.W. Some new volatile compounds from the non-enzymic browning reaction of glucose-glutamic acid system. Z Lebensm Unters Forch 182, 219–223 (1986). https://doi.org/10.1007/BF01042132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01042132

Keywords

Navigation