Skip to main content
Log in

A study of interacting multi-scale wind systems, Canterbury plains, New Zealand

Eine Studie zusammenwirkender Windsysteme verschiedener Größenordnungen, Canterbury Plains, Neuseeland

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The wind regime of the Canterbury region, New Zealand, is composed of several interacting multi-scale wind systems all of which show strong diurnal periodicity. The dynamic orographic effect of the Southern Alps on the prevailing westerly flow results in perturbations to the pressure field and localized antitriptic airflow. Superimposed on this larger scale process are thermotopographic effects resulting from both regional and local land-sea thermal contrasts and slope heating. These processes act within an hierarchy of scales to produce a complex wind regime characterized by marked temporal variability, a layered vertical structure and the frequent occurrence of convergence lines and shear zones. The synergistic nature of the forcing mechanisms and the tendency for nocturnal decoupling of the boundary layer due to stability variations makes it difficult to differentiate and label discrete wind components.

Attempts to simulate this regime using the Colorado State University mesoscale model showed that the model was unable to adequately resolve both the dynamic orographic effect and the local thermotopographic effect because of their differing scales of influence. These results suggest that a more holistic approach to both empirical and theoretical studies in such environments is required if more accurate wind field forecasting is to be achieved.

Zusammenfassung

Das Windregime des Gebiets von Canterbury, Neuseeland, setzt sich aus verschiedenen zusammenwirkenden Windsystemen verschiedener Größenordnungen zusammen, die alle einen starken Tagesgang aufweisen. Der dynamisch-orographische Effekt der neuseeländischen Alpen auf die vorherrschende Westströmung führt zu Störungen im Druckfeld und lokalen Luftbewegungen im Lee. Diesem großräumigen Prozeß sind thermisch-topographische Effekte überlagert, die sowohl durch regionale als auch lokale thermische Unterschiede zwischen Land und Meer und die Erwärmung der Hangregion hervorgerufen werden. Die Vorgänge spielen sich in einer Hierarchie von Größenordnungen ab. Sie erzeugen ein kompliziertes Windsystem, das durch hohe zeitliche Variabilität, eine schichtweise thermische Struktur und häufige Konvergenz- und Scherungszonen gekennzeichnet ist. Die synergetische Natur der Antriebe und die Tendenz zum nächtlichen Entkoppeln der planetaren Grenzschicht aufgrund von Stabilitätsschwankungen macht es schwer, die einzelnen Windkomponenten zu trennen und zuzuordnen.

Die Versuche, dieses Regime mit Hilfe des Mesoscale-Modells der Colorado State University zu simulieren, zeigten, daß es aufgrund der verschiedenen Größenordnungen des Einflusses nicht geeignet war, gleichzeitig den dynamisch-orographischen und den thermo-topographischen Effekt zu reproduzieren. Diese Ergebnisse legen sowohl für empirische wie für theoretische Untersuchungen einen holistischeren Ansatz nahe, um eine genauere Prognose des Windfeldes zu ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson BW (1981) Mesoscale atmospheric circulations. Academic Press, London

    Google Scholar 

  • Barry RG, Perry AH (1973) Synoptic climatology: methods and applications. Methuen, London

    Google Scholar 

  • Clements WE, Nappo CJ (1983) Observation of a drainage flow event on a high-altitude simple slope. J. of Clim Appl Met 22:331–335

    Google Scholar 

  • de Lisle JF (1969) The climate and weather. In: Knox GA (ed) The natural history of Canterbury. Reed, Wellington, pp 68–76

    Google Scholar 

  • Fosberg MA, Marlatt WE, Krupnak L (1976) Estimating airflow patterns over complex terrain. USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, Res Paper RM-162, p 16

    Google Scholar 

  • Gutman LN (1983) On the theory of the katabatic slope wind. Tellus A35:213–218

    Google Scholar 

  • Hill HW (1979) Severe damage to forests in Canterbury, New Zealand, resulting from orographically reinforced winds. New Zealand Meteorological Service, Tech Informat Circ No 169

  • Huss A, Feliks Y (1981) A mesometeorological numerical model of the sea and land breezes involving seaatmospheric interactions. Contr Atm Phys 54: 238–257

    Google Scholar 

  • Keen CS, Lyons WA (1978) Lake/land breeze circulations on the western shore of Lake Michigan. J Appl Met 17:1843–1855

    Google Scholar 

  • McKendry IG (1983) Spatial and temporal aspects of the surface wind regime on the Canterbury Plains, New Zealand. J Clim 3:155–166

    Google Scholar 

  • McKendry IG (1985) An empirical and numerical modelling analysis of a complex mesoscale wind field, Canterbury Plains, New Zealand. Ph D thesis, University of Canterbury, Geography Department, Christchurch, New Zealand, p. 388

    Google Scholar 

  • McRae GR, Shair FH, Seinfeld JH (1981) Convective downmixing of plumes in a coastal environment. J Appl Met 20:113–1324

    Google Scholar 

  • Mahrer A, Pielke RA (1977) The effects of topography on the sea and land breezes in a two-dimensional numerical model. Mon Wea Rev 105:1152–1162

    Google Scholar 

  • Mahrer A, Pielke RA (1978) A test of an upstream spline interpolation technique for the advective terms in a numerical mesoscale model. Mon Wea Rev 106:818–830

    Google Scholar 

  • Manins PC, Sawford BL (1979) Katabatic winds: a field case study. Quart J R Met Soc 105:1011–1025

    Google Scholar 

  • Maunder WJ (1971) The climate of New Zealand —physical and dynamic features. In: Gentilli J (ed) Climates of Autralia and New Zealand. World Survey of Climatology 13: 213–227, Elsevier, Amsterdam

    Google Scholar 

  • Misra PK, McMillan AC (1980) On the dispersion parameters of plumes from tall stacks in a shoreline environment. Bound Layer Met 19:175–185

    Google Scholar 

  • Neale AA, Thompson GH (1978) Surface winds in coastal waters off Westland. New Zealand Meteorological Service, Tech Note No 234

  • Physik WL (1976) A numerical model of the sea-breeze phenomenon over a lake of gulf. J Atm Sci 33: 2107–2135

    Google Scholar 

  • Physik WL (1980) Numerical experiments on the inland penetration of the sea breeze. Quart J R Met Soc 106:735–746

    Google Scholar 

  • Pielke RA (1974) A three-dimensional numerical model of the sea breezes over south Florida. Mon Wea Rev 102:115–139

    Google Scholar 

  • Pielke RA (1984) Mesoscale meteorological modelling: an introductory survey. Academic Press, New York

    Google Scholar 

  • Pielke RA, Mahrer Y (1978) Verification analysis of the University of Virginia three-dimensional mesoscale model prediction over south Florida for July 1, 1973. Mon Wea Rev 106:1568–1589

    Google Scholar 

  • Pierrehumbert RT, Wyman B (1985) Upstream effects of mesoscale mountains. J Atm Sci 42:977–1003

    Google Scholar 

  • Ryan AP (1980) Northwest drifts and night cooling in w5nter in Christchurch. New Zealand Meteorological Service, Tech Note No 243

  • Ryan BC (1977) A mathematical model for diagnosis and prediction of surface winds in mountainous terrain. J Appl Met 16:571–584

    Google Scholar 

  • Schlunzen H, Schatzmann M (1984) Atmosphärische Mesoscale-Modelle — ein Überblick. Hamburger geophysikalische Einzelschriften, Reihe B, Technische Abhandlungen Heft 3

  • Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea-breeze fronts. Quart J R Met Soc 103:47–76

    Google Scholar 

  • Smith RB (1982) Synoptic observations and theory of orographically disturbed wind and pressure. J Atm Sci 39:60–70

    Google Scholar 

  • Sturman AP (1985) An examination of the role of local wind systems in the concentration and dispersion of smoke pollution in Christchurch, New Zealand. New Zealand Geographer, in press

  • Sturman AP, McKendry IG (1984) Detailed analysis of the structure of local wind systems in Canterbury, New Zealand. In: Proc of Nowcasting-II Symposium, Norrkiping, Sweden, 3–7 Sept. European Space Agency, Special Pub 208:81–85

  • Sturman AP, Trewinnard AC, Gorman PA (1984) A study of atmospheric circulation over the South Island of New Zealand (1961–1980). Weather and Climate 4:53–62

    Google Scholar 

  • Sturman AP, Tyson PD (1981) Sea breezes along the Canterbury coast in the vicinity of Christchurch, New Zealand. J Clim 1:203–219

    Google Scholar 

  • Tomlinson AI (1976) Climate. In: Wards I (ed), New Zealand atlas, Government. Printer, Wellington, pp 82–89

    Google Scholar 

  • Trenberth KE (1977) Surface atmospheric tides in New Zealand. New Zealand J of Science 20:339–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKendry, I.G., Sturman, A.P. & Owens, I.F. A study of interacting multi-scale wind systems, Canterbury plains, New Zealand. Meteorl. Atmos. Phys. 35, 242–252 (1986). https://doi.org/10.1007/BF01041817

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041817

Keywords

Navigation