Skip to main content
Log in

Scavenging of airborne particles by collision with water drops —model studies on the combined effect of essential microdynamic mechanisms

Aufnahme von luftgetragenen Teilchen durch Kollision mit Wassertropfen — Modellstudien über den Gesamteffekt wesentlicher mikrodynamischer Mechanismen

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Out information from the limited amount of observations about the capture of airborne particles by cloud and precipitation drops reveals that this complex scavenging phenomenon depends on various, the dropletparticle collisions simultaneously driving micromechanisms. Theoretical models attempt to treat these processes in combination.

A major task of the study reported here was to describe the responsible scavenging interactions as part of a microdynamical simulation model for particle and drop size spectra. Using for this purpose the theory of nonlinear stochastic collisions we show that key properties (such as size dependence, relaxation, etc.) associated with particle scavenging are predicted satisfactorily with meteorologically representative input data.

Zusammenfassung

Die aus Beobachtungen gewinnbare Information über das Einfangen von luftgetragenen Teilchen durch Wolken- und Niederschlagstropfen zeigt klar, daß dieses komplexe Auswaschphänomen von mehreren, gemeinsam für die Tropfen-Teilchenkoflisionen verantwortlichen Mikromechanismen abhängt. In theoretischen Modellen versucht man, diese Prozesse kombiniert zu behandeln.

Kernpunkt der theoretischen Untersuchungen, die hier vorgestellt werden, war es, die verantwortlichen Wechselwirkungen in einem mikrodynamischen Simulationsmodell für Größenspektren von Teilchen und Tropfen zu beschreiben. Hierfür wurde die entsprechende Theorie nichtlinearer stochastischer Kollisionen verwendet. Die Rechnungen liefern, daß wichtige Eigenschaften (wie Größenabhängigkeit, Relaxation usw.), die mit dem Teilchenauswaschvorgang zusammenhängen, bei Annahme meteorologisch repräsentativer Eingabedaten zufriedenstellend bestimmt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers GP (1982) The chemical composition of precipitation: A southern hemisphere perspective. In: Goldberg ED (ed) Atmospheric chemistry. Dahlem Workshop Reports, Springer, Berlin, pp 41–56

    Google Scholar 

  • Beard KV (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J Atm Sci 33: 851–864

    Google Scholar 

  • Berry EX, Reinhardt RL (1974) An analysis of cloud drop growth by collection: Part I. Double distributions. J Atm Sci 31: 1814–1824

    Google Scholar 

  • Carstens JC, Martin JJ (1983) A comparison of incloud scavenging by Brownian diffusion and thermo- and diffusiophoresis. Precipitation Scavenging, Dry Deposition and Resuspension, Vol I Elsevier, pp 529–540

    Google Scholar 

  • Facy L (1960) Les mécanismes naturels de lessivage de l'atmosphère. Pure and Appl Geophys 46: 201–215

    Google Scholar 

  • Fitzgerald JW (1983) Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition. J Atm Sci 30: 628–634

    Google Scholar 

  • Greenfield SM (1957) Rain scavenging of radioactive particle matter from the atmosphere. J Met 14: 115–125

    Google Scholar 

  • Grover SN, Pruppacher HR, Hamielec AE (1977) A numerical determination of the efficiency with which spherical aerosol particles collide with spherical water drops due-to inertial impaction and phoretic and electric forces. J Atm Sci 34: 1655–1663

    Google Scholar 

  • Hall WD (1980) A detailed microphysical model within a two-dimensional dynamical framework: Model description and preliminary results. J Atm Sci 37: 2486–2507

    Google Scholar 

  • Herbert F (1978) A theoretical model to describe the motion of aerosol particles due to the combined action of inertia, Brownian diffusion and phoretic and electric forces. J Atm Sci 35: 1744–1750

    Google Scholar 

  • Herbert F (1981) On the flux and collision mechanism of scavenging process of atmospheric aerosol particles. In: Herbert F (ed) Atmospheric trace constituents. Vieweg, Braunschweig, pp 117–128.

    Google Scholar 

  • Herbert F, Roos M, Beheng KD (1983) Ein Modell-experiment zum Auswaschen von Teilchen durch Wolken- und Regentropfen. Met Rdsch 36: 130–134

    Google Scholar 

  • Herbert F (1986) CCN-equilibrium theory. Met Rdsch 39: 82–87

    Google Scholar 

  • Jiusto JE, Lala GG (1981) CCN-supersaturation spectra slopes (k). 3. Intern Cloud Condens Nuclei Workshop, NASA Conf Publ 2212, Reno, pp 64–68

    Google Scholar 

  • Junge C, McLaren E (1971) Relationship of cloud nuclei spectra to aerosol size distribution and composition. J Atm Sci 28: 382–390

    Google Scholar 

  • Leong KH, Beard KV, Ochs III HT (1982) Laboratory measurements of particle capture by evaporating cloud drops. J Atm Sci 39: 1130–1140

    Google Scholar 

  • Martin JJ, Wang PK, Pruppacher HR, Pitter RL (1981) A numerical study of the effect of electric charges on the efficiency with which planar ice crystals collect supercooled cloud drops. J Atm Sci 38: 2462–2469

    Google Scholar 

  • Radke LF, Hobbs PV, Eltgroth MW (1980) Scavenging of aerosol particles by precipitation. J Appl Met 19: 715–722

    Google Scholar 

  • Slinn WGN, Hales JM (1971) A reevaluation of the role of thermophoresis as a mechanism of in- and below-cloud scavenging. J Atm Sci 28: 1465–1471

    Google Scholar 

  • Srivastava RC (1971) Size distribution of raindrops generated by their breakup and coalescence. J Atm Sci 28: 410–415

    Google Scholar 

  • Takahashi T (1973) Measurements of electric charge on cloud drops, drizzle drops and rain drops. Rev Geophys Space Phys 11: 903–924

    Google Scholar 

  • Twomey S, Woichiechowski TA (1969) Observation of the geographical variation of cloud nuclei. J Atm Sci 26: 684–688

    Google Scholar 

  • Wang PK, Pruppacher HR (1977) An experimental determination of the efficiency with which aerosol particles are collected by water drops in subsaturated air. J Atm Sci 34: 1664–1669

    Google Scholar 

  • Wang PK, Grover SN, Pruppacher HR (1978) On the effect of electric charges on the seavenging of aerosol particles by clouds and small raindrops. J Atm Sci 35: 1735–1743

    Google Scholar 

  • Young KC (1974) The role of contact nucleation in ice phase initiation in clouds. J Atm Sci 31: 768–776

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbert, F., Beheng, K.D. Scavenging of airborne particles by collision with water drops —model studies on the combined effect of essential microdynamic mechanisms. Meteorl. Atmos. Phys. 35, 201–211 (1986). https://doi.org/10.1007/BF01041812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041812

Keywords

Navigation