Skip to main content
Log in

Inclusion of the regioisomeric nitrobenzene derivatives and ferrocene guests by β-cyclodextrin polymer and their transport through the polymer matrix

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

Host-guest equilibria have been investigated involving inclusion sites of the microparticulate amorphous β-cyclodextrin polymer, β-CDP-25, and a range of redox guests comprising regioisomeric nitrobenzene derivatives and ferrocene. The equilibria were studied by the batch method. Inclusion-governed, Langmuir-type sorption equilibria occurred in the β-CDP-25/guest systems studied in 1:1 (v/v) aqueous methanolic solutions. A 1:1 (host inclusion site)/guest stoichiometry was found and sorption equilibrium constants were determined. The values of the constants changed by a factor of 20 between the most weakly and strongly included guests. Regioselective discrimination of β-CDP-25 was most pronounced with respect to nitrophenols. Transport phenomena of guest molecules in the β-CDP-25 matrix have also been studied. The apparent diffusion coefficients of guest molecules were determined in the β-CDP-25 matrix by chronamperometry at the (β-CDP-25)-PTFE-carbon composite electrodes. These diffusion coefficients were almost four orders of magnitude lower than the corresponding coefficients of guest molecules in solution in the absence of β-CD. The diffusion mechanism was postulated for the guest molecules in the β-CDP-25 matrix, which invoked hopping of the molecules between inclusion sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szejtli,Cylodextrins and their Inclusion Complexes, Akademiai Kiadó, Budapest, 1982.

    Google Scholar 

  2. J. F. Stoddart and R. Zarzycki: ‘Chemically-modified Cyclodextrins as Second Sphere Ligands for Transition Metal Complexes’,Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 197–203. Kluwer (1988).

  3. D. R. Alston, P. R. Ashton, T. H. Lilley, J. Stoddart, and R. Zarzycki:Carhohydr. Res. 192, 259 (1989).

    Google Scholar 

  4. A. Harada and S. Takahashi:J. Chem. Soc., Chem. Commun. 645 (1984).

  5. A. Buvari, J. Szejtli, and L. Barcza:J. Incl. Phenom. 1, 151, 1983.

    Google Scholar 

  6. A. Harada and S. Takahashi:Chem. Lett. 2089 (1984).

  7. W. Saenger: ‘Chemical and Physical Studies on Cyclodextrin Inclusion Compounds’,Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 159–164. Kluwer (1988).

  8. J. A. Ripmeester and A. Majid: ‘Preparation and13C NMR Identification of Solid Cyclodextrin Inclusion Compounds’,Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 165–171. Kluwer (1988).

  9. A. Ross-Hoffet: ‘Characterization of β-Cyclodextrin Complexes’Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 253–261. Kluwer (1988).

  10. J. Solms and R. H. Egli:Helv. Chim. Acta 48, 1225 (1965).

    Google Scholar 

  11. Y. Kawaguchi, Y. Mizobuchi, M. Tanaka, and T. Shono:Bull. Chem. Soc. Jpn. 55, 2611 (1982).

    Google Scholar 

  12. E. Fenyvesi, L. Decsei, A. Ujhazy, B. Zsadon, and J. Szejtli: ‘Complexes of Insoluble Cyclodextrin Polymers’Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 227–235. Kluwer (1988).

  13. R. B. Friedman, A. R. Hedges, F. L. Black, and D. J. Gottneid:Carbohydr. Res. 192, 283 (1989).

    Google Scholar 

  14. A. Harada, M. Furuem, and S. I. Nokazura:J. Polym. Sci. 16, 189 (1978).

    Google Scholar 

  15. B. Zsadon, M. Szilasi, K. H. Otta, F. Tudös, E. Fenyvesi, and J. Szejtli:Acta Chim. Acad. Sci. Hung. 100, 265 (1979).

    Google Scholar 

  16. B. Zsadon, M. Szilasi, F. Tudös, and J. Szejtli:J. Chromatogr. 208, 109 (1981).

    Google Scholar 

  17. B. Zsadon, M. Szilasi, F. Tudös, E. Fenyvesi, and J. Szejtli:Starke 31, 11 (1979).

    Google Scholar 

  18. B. Zsadon, L. Decsei, M. Szilasi, F. Tudös, and J. Szejtli:J. Chromatogr. 270, 127 (1983).

    Google Scholar 

  19. A. Ujhazi, B. Zsadon, and J. Szejtli: ‘Gel Chromatographic Separation of Proteins on Cyclodextrin Bead Polymers’,Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 497–501. Kluwer (1988).

  20. T. Cserhati, A. Dobrovolszky, E. Fenyvesi, and J. Szejtli:J. High Res. Chromatogr. Chromatogr. Commun. 6, 442 (1983).

    Google Scholar 

  21. R. Kojin, Yi-chun To, H. Ikeda, Ch. Yoon, M. Iijima, T. Ikeda, and F. Toda: ‘Catalytic Activity of Hydrolases Using Modified Cyclodextrins’Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 509–512. Kluwer (1988).

  22. M. Marzona and G. Girandi: ‘Functionalized Cyclodextrins as Oxo-reductasive Enzyme Models’,Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 513–517. Kluwer (1988).

  23. A. Yasuda, H. Mori, and J. Seto:J. Appl. Electrochem. 17, 567 (1987).

    Google Scholar 

  24. M. H. Shah and I. L. Honigberg:Anal. Lett. 16 (A15), 1149 (1983) and refs therein.

    Google Scholar 

  25. R. W. Murray:Chemically Modified Electrodes (Electroanalytical Chemistry Vol. 13, Ed. A. J. Bard), pp. 191–367, Dekker (1984).

  26. T. K. Korpela and J.-P. Himanen:J. Chromatogr. 290, 351 (1984).

    Google Scholar 

  27. A. Buvari and L. Barcza:J. Chem. Soc., Perkin Trans. 2, 543, (1988).

    Google Scholar 

  28. S. Ebel and A. Karger: ‘IR-spectroscopic Measurement of thep-Nitrophenol - β-Cyclodextrin Equilibrium in Aqueous Solution’,Proc. Int. Symp. Cyclodextrins, 4th 1988, Eds. O. Huber and J. Szejtli, pp. 221–225. Kluwer (1988).

  29. E. A. Lewis and L. D. Hansen:J. Chem. Soc., Perkin Trans. 2, 2081 (1973).

    Google Scholar 

  30. Y. Inone, T. Okuda, Y. Miyata and R. Chûjô:Carbohydr. Res. 125, 65 (1984).

    Google Scholar 

  31. J. Taraszewska and A. K. Plasecki:J. Electroanal. Chem. 226, 137 (1987).

    Google Scholar 

  32. A.-M. Martre, G. Mousset, and P. Pouillen:Electrochim. Acta 33, 1459 (1988).

    Google Scholar 

  33. T. Osa, T. Matsue and M. Fujihira,Heterocycles 6, 1833 (1977).

    Google Scholar 

  34. J. Szejtli, E. Fenyvesi, S. Zoltan, B. Zsadon, and F. Tudös (Chinoin, Hungary):Hung. Pat. 177,419 (1981);Belg. Pat. 877,653 (1980);U.S. Pat. 4,274,985 (1981);Ger. Pat. 2,927,733 (1980);C.A. 92, 95049j (1980).

    Google Scholar 

  35. B. Zsadon and E. Fenyvesi: ‘Cyclodextrin Polymers: Types and Specific Properties’,Proc. Int. Symp. Cyclodextrins, 1st 1981, Ed. J. Szejtli, pp. 327–36. Akademíai Kiadó and Reidel (1982).

  36. A. Gerlóczy, A. Fónagy, and J. Szejtli:Starke 35, 320 (1983).

    Google Scholar 

  37. Graphite Physical Property Data, Ultra Carbon Corporation, Bay City, MI, manufacturer bulletin.

  38. K. Kutner, T. J. Meyer, and R. W. Murray:J. Electroanal. Chem. 195, 375 (1985).

    Google Scholar 

  39. B. Siegel and R. Breslow:J. Am. Chem. Soc. 97, 6869 (1975).

    Google Scholar 

  40. H. S. White, J. Leddy, and A. J. Bard:J. Am. Chem. Soc. 104, 4811 (1982).

    Google Scholar 

  41. N. Wiedenhof and R. G. Trieling:Starke 23, 129 (1971).

    Google Scholar 

  42. T. Kuwana, D. E. Bublitz, and G. Hoh:J. Am. Chem. Soc. 82, 5811 (1960).

    Google Scholar 

  43. H. Uedaira and H. Uedaira:J. Phys. Chem. 74, 2211 (1970).

    Google Scholar 

  44. V. Kacena, L. Matousek,Coll. Czech. Chem. Commun. 18, 294 (1953).

    Google Scholar 

  45. Z. Zabransky,Coll. Czech. Chem. Commun. 24, 3075 (1959).

    Google Scholar 

  46. H. A. Banesi and J. H. Hildebrand:J. Am. Chem. Soc. 71, 2703 (1949).

    Google Scholar 

  47. D. Sybilska, J. Zukowski, K. Duszczyk, and A. Ratajczak: in preparation.

  48. T. Matsue, D. H. Evans, T. Osa, and N. Kobayashi:J. Am. Chem. Soc. 107, 3411 (1985).

    Google Scholar 

  49. Z. Galus:Fundamentals of Electrochemical Analysis, pp. 360–369, Ellis-Horwood, (1976).

  50. A. Harada and S. Takahashi:J. Incl. Phenom. 2, 791 (1984).

    Google Scholar 

  51. W. Kemula and T. M. Krygowski: Nitro Compounds,Encyclopedia of Electrochem. of Elements vol. 13, Eds. A. J. Bard and H. Lund, pp. 77–130. Dekker (1979).

  52. A. Petr, D. Koradecki, L. Dunsh, and W. Kutner: submitted.

  53. P. G. Pickup, W. Kutner, C. R. Leidner, and R. W. Murray:J. Am. Chem. Soc. 106, 1991 (1984).

    Google Scholar 

  54. I. Sanemasa and Y. Akamine:Bull. Chem. Soc. Jpn. 60, 2059 (1987).

    Google Scholar 

  55. W. Saenger:Angew. Chem., Int. Ed. Engl. 19, 344 (1980).

    Google Scholar 

  56. A. I. Kitajgorodsky:Molecular Crystals and Molecules, p. 19 Academic Press (1973).

  57. S. C. Nyburg and C. H. Faerman:Acta Crystallogr. B41, 274 (1985).

    Google Scholar 

  58. M. Fujiki, T. Deguchi, and I. Sanemasa:Bull. Chem. Soc. Jpn. 61, 1163 (1988).

    Google Scholar 

  59. D. Koradecki, M. Lukasiak, A. Proń, W. Kutner and J. Suwalski:Polymer Commun 30, 61 (1989).

    Google Scholar 

  60. J. A. Ripmeester, Ch. I. Ratcliffe, and G. Cameron:Carbohydr. Res. 192, 69 (1989).

    Google Scholar 

  61. R. W. Murray:Ann. Rev. Mater. Sci. 14, 145 (1984).

    Google Scholar 

  62. F. B. Kaufman and E. M. Engler:J. Am. Chem. Soc. 101, 547 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koradecki, D., Kutner, W. Inclusion of the regioisomeric nitrobenzene derivatives and ferrocene guests by β-cyclodextrin polymer and their transport through the polymer matrix. J Incl Phenom Macrocycl Chem 10, 79–96 (1991). https://doi.org/10.1007/BF01041642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041642

Key words

Navigation