Skip to main content
Log in

Metal ion complexes of 2-picolinamineN-oxide

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

A series of cobalt(II), nickel(II) and copper(II) complexes of 2-picolinamineN-oxide, HA, has been prepared. Solids of formula [M(HA)3](BF4)2 (M=cobalt(II) or nickel(II); [Cu(HA)2]X2 (X=BF 4 , NO 3 ); [Co(HA)2X2] (X=Cl or Br); [Ni(HA)2Cl2] and [Cu(HA)X2] (X=Cl or Br] have been isolated and characterized by partial elemental analyses, molar conductivities, magnetic susceptibilities, DSC-TGA, and spectral methods. All complexes were found to be monomeric, and their spectral parameters are compared with those of the metal ion complexes ofN-alkyl-2-picolinamineN-oxides, 2-dialkylaminopyridineN-oxides and 2-picolinamine. The cobalt(II) and nickel(II) halide complexes spectrally show a mixture of octahedral and tetrahedral centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. X. West and R. J. Hartley,J. Inorg. Nucl. Chem.,42, 1141 (1981),

    Google Scholar 

  2. —,43, 963 (1981);

    Google Scholar 

  3. G. Ertem and D. X. West,Polyhedron,4, 33 (1985);

    Google Scholar 

  4. D. X. West and L. A. McDonald,J. Inorg. Nucl. Chem.,43, 1507 (1981),

    Google Scholar 

  5. D. X. West and K. D. Mariam,J. Inorg. Nucl. Chem.,43, 2343 (1981);

    Google Scholar 

  6. G. Ertem and D. X. West,Transition Met. Chem.,9, 412 (1984).

    Google Scholar 

  7. D. X. West and R. J. Hartley,J. Inorg. Nucl. Chem.,42, 711 (1980);43, 957 (1981).

    Google Scholar 

  8. G. Ertem and D. X. West,Transition Met. Chem.,10, 131 (1985).

    Google Scholar 

  9. D. X. West and J. S. Sedgwick,J. Inorg. Nucl. Chem.,43, 2307 (1981) and refs. therein.

    Google Scholar 

  10. D. X. West,Inorg. Chim. Acta,71, 251 (1983);Polyhedron,2, 999 (1983); D. X. West and C. A. Nipp,Transition Met. Chem.,10, 201 (1985);Synth. React. Inorg. Met-org. Chem.,15, 1139 (1985).

    Google Scholar 

  11. D. X. West and L. K. Goodmon,Inorg. Chim. Acta,104, 161 (1985); D. X. West and C. A. Nipp,Inorg. Chim. Acta,118, 157 (1986).

    Google Scholar 

  12. D. X. West and C. A. Nipp,Inorg. Chim. Acta,127, 129 (1987).

    Google Scholar 

  13. F. Holmes and F. Jones,J. Chem. Soc., 2398 (1960).

  14. G. J. Sutton,Aust J. Chem.,13, 74, 222, 473 (1960);14, 37, 545, 551 (1961);15, 232 (1962).

    Google Scholar 

  15. S. Utsune and K. Sone,Bull. Chem. Soc. Jpn. 37, 1038 (1964);40, 105 (1967).

    Google Scholar 

  16. J. L. Walter and S. M. Rosalie,J. Inorg. Nucl. Chem.,28, 2969 (1966).

    Google Scholar 

  17. L. El-Sayed and R. O. Ragsdale,Inorg. Chem.,6, 1640 (1967).

    Google Scholar 

  18. A. Syamal,Inorg. Nucl. Chem. Lett.,4, 625 (1968);J. Ind. Chem. Soc.,45, 343 (1968).

    Google Scholar 

  19. R. L. Dutta and K. K. Bhattacharya,J. Ind. Chem. Soc.,45, 1091 (1968).

    Google Scholar 

  20. A. R. Nicholson and G. J. Sutton,Aust. J. Chem.,22, 59, 373, 1543 (1969).

    Google Scholar 

  21. A. Earnshaw, L. F. Larkworthy and K. C. Patel,J. Chem. Soc. A, 1840 (1970).

  22. A. A. Amaro and K. Seff,Acta Crystallogr.,B28, 2298 (1972).

    Google Scholar 

  23. K. Michelsen,Acta Chem. Scand.,26, 769, 1517 (1972);27, 1823 (1973).

    Google Scholar 

  24. T.-M. Hseu, Y.-H. Tsai and C.-W. Cheng,J. Chin. Chem. Soc.,22, 299 (1975).

    Google Scholar 

  25. M. Noji, Y. Kidani and H. Koike,Bull. Chem. Soc. Jpn,48, 245 (1975).

    Google Scholar 

  26. H. M. Helis, W. H. Goodman, R. B. Wilson, J. A. Morgan and D. J. Hodgson,Inorg. Chem.,16, 2412 (1977).

    Google Scholar 

  27. M. L. Niven and G. C. Percy,Spectrosc. Lett.,10, 519 (1977);Transition Met. Chem.,3, 267 (1978).

    Google Scholar 

  28. M. L. Niven, G. C. Percy and D. A. Thornton,J. Mol. Struct.,68, 73 (1980).

    Google Scholar 

  29. C. J. O'Connor, E. E. Eduok, F. R. Fronczek and O. Kahn,Inorg. Chim. Acta,105, 107 (1985).

    Google Scholar 

  30. B. Singh and P. Srivastava,Transition Met. Chem.,11, 106 (1986).

    Google Scholar 

  31. W. J. Geary,Coord. Chem. Rev.,7, 81 (1971).

    Google Scholar 

  32. J. V. Quagliano, J. Fujita, G. Franz, D. J. Phillips, J. A. Walmsley and S. Y. Tyree,J. Am. Chem. Soc.,83, 3770 (1961).

    Google Scholar 

  33. T. P. E. Auf der Heyde, C. S. Green, D. S. Needham, D. A. Thornton and G. M. Watkins,J. Mol. Struct.,70, 121 (1981).

    Google Scholar 

  34. G. Ertem, J. C. Severns and D. X. West,Inorg. Chim. Acta,115, 141 (1986).

    Google Scholar 

  35. A. S. Quist, J. B. Bates and G. E. Boyd,J. Chem. Phys.,54, 4896 (1971).

    Google Scholar 

  36. S. F. Pavkovic and J. N. Brown,Acta Crystallogr.,B38, 274 (1982).

    Google Scholar 

  37. R. Barbucci and M. J. M. Campbell,Inorg. Chim. Acta,16, 113 (1976).

    Google Scholar 

  38. G. Arena, R. Cali, E. Rizzarelli, S. Sammartano, R. Barbucci and M. J. M. Campbell,J. Chem. Soc., Dalton Trans., 1090 (1978).

  39. C. Ou, D. A. Power, J. A. Thieh, T. R. Felthouse, D. N. Hendrickson, J. A. Potenza and H. J. Schugar,Inorg. Chem.,17, 34 (1978).

    Google Scholar 

  40. H. W. Richardson, J. R. Wasson, W. E. Estes and W. E. Hatfield,Inorg. Chim. Acta,23, 205 (1977).

    Google Scholar 

  41. G. D. Shields, S. Christiano and R. D. Bereman,J. Inorg. Nucl. Chem.,40, 1953 (1978).

    Google Scholar 

  42. V. D. Khanolkar and D. D. Khanolkar,Ind. J. Chem.,18A, 315 (1979).

    Google Scholar 

  43. H. Sakurai, C. Shibota, H. Matsuara and T. Yoshimura,Inorg. Chem. Acta,56, L25 (1981).

    Google Scholar 

  44. D. X. West and L. M. Roberts,Inorg. Chim. Acta,90, 79 (1984).

    Google Scholar 

  45. R. S. Naidu and R. R. Naidu,J. Inorg. Nucl. Chem.,41, 1625 (1979); M. Mohan and B. D. Paramhus,Transition Met. Chem.,5, 113 (1980).

    Google Scholar 

  46. K. K. Bennett and D. X. West,J. Inorg. Nucl. Chem.,43, 2021 (1981).

    Google Scholar 

  47. S. N. Choi, R. D. Bereman and J. R. Wasson,J. Inorg. Nucl. Chem.,37, 2087 (1975).

    Google Scholar 

  48. A. B. P. Lever,J. Chem. Educ.,45, 711 (1968).

    Google Scholar 

  49. D. W. Meek, R. S. Drago and T. S. Piper,Inorg. Chem.,1, 285 (1962).

    Google Scholar 

  50. R. S. Drago, D. W. Meek, R. Longhi and M. D. Joesten,Inorg. Chem.,2, 1056 (1963).

    Google Scholar 

  51. D. X. West and H. M. Nowak,J. Inorg. Nucl. Chem.,43, 2719 (1981).

    Google Scholar 

  52. D. X. West and T. J. O'Grady,J. Inorg. Nucl. Chem.,43, 2725 (1981).

    Google Scholar 

  53. J. Terkeijden, W. L. Driessen and W. L. Groenveld,Transition Met. Chem.,5, 346 (1980).

    Google Scholar 

  54. W. Byers, B. Fa-Chun Chou, A. B. P. Lever, and R. V. Parish,J. Am. Chem. Soc.,91, 1329 (1969).

    Google Scholar 

  55. N. Saha and K. M. Datta,Inorg. Nucl. Chem. Lett.,15, 331 (1979).

    Google Scholar 

  56. N. Saha, A. K. Adak and K. M. Datta,Synth. React. Inorg. Met-org. Chem.,14, 731 (1984).

    Google Scholar 

  57. J. P. Scovill, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, D.X., Profilet, R.D., Severns, J.C. et al. Metal ion complexes of 2-picolinamineN-oxide. Transition Met Chem 13, 29–34 (1988). https://doi.org/10.1007/BF01041494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041494

Keywords

Navigation