Skip to main content

The approximation of periodic functions by linear summation methods for Fourier series

This is a preview of subscription content, access via your institution.

Literature Cited

  1. 1.

    S. B. Stechkin, The Order of Best Approximations for Continuous Functions, Izv. Akad. Nauk SSSR, Seriya Matem.,15, No. 3, 212–242 (1941).

    Google Scholar 

  2. 2.

    I. P. Natanson, Constructive Function Theory [in Russian], Gostekhizdat, Moscow-Leningrad (1949).

    Google Scholar 

  3. 3.

    G. Szegö, Über einem Satz des Herrn Bernstein, Schreiften Königsb, Ges. (1928).

  4. 4.

    V. V. Zhuk, Approximation of 2π-periodic Functions by Linear Operators, Sb. Nauchnykh Trudov Leningr. Mekhan. In-ta, No. 50, 93–115 (1965).

    Google Scholar 

  5. 5.

    R. M. Trigub, Constructive Characteristics of Certain Function Classes, Izv. Akad. Nauk SSSR, Seriya Matem.,29, No. 5, 615–630 (1965).

    Google Scholar 

  6. 6.

    A. F. Timan, Approximation of Functions of One Variable [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  7. 7.

    S. B. Stechkin, The Approximation of Periodic Functions by Fejér Sums, Trudy Matem. In-ta im. V. A. Steklov,62, 48–60 (1961).

    Google Scholar 

  8. 8.

    M. F. Timan, Best Approximation of Functions and Linear Methods of Summation of Fourier Series, Izv. Akad. Nauk SSSR, Seriya Matem.,29, No. 4, 585–604 (1965).

    Google Scholar 

Download references

Authors

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 9, No. 3, pp. 713–716, May–June, 1968.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhuk, V.V. The approximation of periodic functions by linear summation methods for Fourier series. Sib Math J 9, 534–536 (1968). https://doi.org/10.1007/BF01040918

Download citation

Keywords

  • Fourier Series
  • Periodic Function
  • Summation Method
  • Linear Summation
  • Linear Summation Method