Skip to main content
Log in

Maximum likelihood estimation of joint size from trace length measurements

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

Usually, rock joints are observed in outcrops and excavation walls only as traces. Under some assumptions about the shapes of the joints and the nature of their size distributions, the underlying joint size distribution can be estimated from trace length measurements. However, the interpretation of trace length distributions from line mapping data should be approached with caution. The data are always length-biased and furthermore, the semi-trace length, the trace length, and the underlying joint size may have different distributional forms. Semi-trace length distributions are monotonic decreasing functions not sensitive to changes in the real trace length distributions. Experimental full trace length distributions are shown to have lognormal distributions and to be insensitive to major changes in the underlying joint size distributions. Under the assumptions of joint convexity and circularity a parametric model for the three-dimensional distribution of joint sizes is developed. A maximum likelihood estimation of the distribution of joint diameters, which best reflects the observed joint trace data, and corrects simultaneously for joint censoring, truncation and size bias, is developed. The theory is illustrated with numerical examples using data collected from five field sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baecher, G. B. (1980): Progressively censored sampling of rock joints traces. Mathematical Geology 12 (1), 33–40.

    Google Scholar 

  • Baecher, G. B., Lanney, N. A. (1978): Trace length biases in joint surveys. In: Proc. 19th U. S. Symp. Rock Mech., Mackay School of Mines, 56–65.

  • Baecher, G. B., Einstein, H. H., Lanney, N. A. (1977): Statistical description of rock properties and sampling. In: Proc. 18th U. S. Symp. Rock Mech., Colorado School of Mines, 5C 1–8.

  • Baldwin, J. T., Swain, H. D., Clark, G. H. (1978): Geology and grade distribution of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ. Geol. 73 (5), 690–702.

    Google Scholar 

  • Billaux, D., Chiles, J. P., Hestir, K., Long, J. (1989): Three dimensional statistical modelling of a fractured rock mass — An example from the Fanay-Augeres mine. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26, 281–299.

    Google Scholar 

  • Call, R. D., Savely, J. P., Nicholas, D. E. (1976): Estimation of joint set characteristics from surface mapping data. In: Hustrulid, W. A. (ed.), Monograph on rock mech. appl. in mining, AIME, New York, 65–73.

    Google Scholar 

  • Chan, L. P. (1986): Application of block theory and simulation techniques to optimum design of rock excavations. PhD Thesis, University of California, Berkeley.

    Google Scholar 

  • Cox, D. R. (1959): Some sampling problems in technology. In: Johnson, N., Smith, H. (eds.), New developments in survey sampling. Wiley, New York, 507–513.

    Google Scholar 

  • Crofton, M. W. (1885): Probability. In: Encyclopedia Britannica. 9th edn. 19, 768.

  • Crow, I. L., Shimizu, K. (eds.) (1988): Statistics: Textbooks and monographs. Vol. 88, Marcel Dekker, New York.

    Google Scholar 

  • Cruden, D. M. (1977): Describing the size of discontinuities. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 14, 133–137.

    Google Scholar 

  • De Roo, J. A. (1989): The Elura Ag−Pb−Zn Mine in Australia — Ore genesis in a slate belt by synodeformational metasomatism along hydrothermal fault conduits. Econ. Geol. 84, 256–278.

    Google Scholar 

  • Epstein, B. (1954): Truncated life tests in the exponential case. Ann. Math. Statist. 25, 555.

    Google Scholar 

  • Epstein, B. (1960): Estimation from life test data. Technometrics 3, 107–109.

    Google Scholar 

  • Fullman, R. L. (1953): Measurements of particle sizes in opaque bodies. F. Metals 5, 447–452.

    Google Scholar 

  • Kendall, M. G., Moran, P. A. P. (1963): Geometrical probability. Griffin's Statistical Monographs and Courses 10, 86–89.

    Google Scholar 

  • Kendall, M. G., Stuart, A. (1973): The advanced theory of statistics. Hafner, New York.

    Google Scholar 

  • Kubackova, L., Kubacek, L., Kukuba, J. (1987): Probability and statistics in geodesy and geophysics. Elsevier, Amsterdam.

    Google Scholar 

  • Kvapil, R., Baeza, L., Rosenthal, J., Flores, G. (1989): Block caving at El Teniente Mine, Chile. Trans. Inst. Min. Metall. 98, A 43–56.

    Google Scholar 

  • Laslett, G. M. (1982): Censoring and edge effects in areal and line transect sampling of rock joint traces. Mathematical Geology 14 (2), 125–139.

    Google Scholar 

  • O'Sullivan, F. (1986): A statistical perspective on ill-posed inverse problems. Statistical Science 1(4), 502–527.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1985). Numerical recipes: The art of scientific computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Priest, S. D. (1985): Hemispherical projection methods in rock mechanics. Allen and Unwin, London.

    Google Scholar 

  • Priest, S. D., Hudson, J. A. (1981): Estimating discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18, 183–197.

    Google Scholar 

  • Richards, H. C., Bryan, W. H. (1933). The problem of the Brisbane tuff. In: Proc., Roy. Soc. Qld. 45, 50–62.

  • Roleau, A. (1984): Statistical characterization and numerical simulation of a fracture system — Application to groundwater flow in the stripa granite. PhD Thesis, University of Waterloo, Ontario.

    Google Scholar 

  • Santalo, L. A. (1955): Sorbe la distribucion de los tamanos de corpusculos contenidos en un cuerpo a partir de la distribucion en sus secciones a proyecciones. Trabajos de estadistica 6, 181–196.

    Google Scholar 

  • Terzaghi, R. D. (1965): Sources of error in joint surveys. Géotechnique 15, 287–303.

    Google Scholar 

  • Wade, M. L., Solomon, M. (1958): Geology of the Mt. Lyell Mine, Tasmania. Econ Geol. 53, 367–416.

    Google Scholar 

  • Warburton, P. M. (1980): A stereological interpretation of joint trace data. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17, 181–190.

    Google Scholar 

  • Weibel, E. R. (1980): Stereological methods. Academic Press, London.

    Google Scholar 

  • Wicksell, S. D. (1925): The corpuscle problem I; A mathematical study of a biometric problem. Biometrika 17, 84–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaescusa, E., Brown, E.T. Maximum likelihood estimation of joint size from trace length measurements. Rock Mech Rock Engng 25, 67–87 (1992). https://doi.org/10.1007/BF01040513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01040513

Keywords

Navigation