Advertisement

Radiophysics and Quantum Electronics

, Volume 34, Issue 6, pp 556–563 | Cite as

Influence of a fractal signal on a Feigenbaum system and bifurcation in renormalization group equations

  • A. P. Kuznetsov
  • S. P. Kuznetsov
  • I. R. Sataev
Article
  • 13 Downloads

Keywords

Renormalization Group Fractal Signal Group Equation Renormalization Group Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. G. Schuster, Deterministic Chaos: an Introduction, 2nd rev. ed., Weinheim, F.R.G. (1989).Google Scholar
  2. 2.
    T. Halsey, M. Jensen, L. Kadanoff, et al., Phys. Rev.,33, No. 2, 1141 (1986).Google Scholar
  3. 3.
    E. Aurelli, J. Stat. Phys.,47, No. 3-4, 439 (1987).Google Scholar
  4. 4.
    M. Feigenbaum, Usp. Fiz. Nauk,141, No. 2, 343 (1983).Google Scholar
  5. 5.
    B. Hu and I. Sattia, Phys. Lett.,A98, 143 (1983).Google Scholar
  6. 6.
    I. Procaccia, S. Thomae, and C. Tresser, Phys. Rev.,A35, No. 4, 1884 (1987).Google Scholar
  7. 7.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., Pergamon Press (1989).Google Scholar
  9. 9.
    G. Ioss and D. D. Joseph, Elementary Stability and Bifurcation Theory, 2nd ed., Springer-Verlag, New York (1990).Google Scholar
  10. 10.
    B. P. Bezruchko, Yu. V. Gulyaev, et al., Dokl. Akad. Nauk SSSR,287, No. 3, 619 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. P. Kuznetsov
  • S. P. Kuznetsov
  • I. R. Sataev

There are no affiliations available

Personalised recommendations