Skip to main content
Log in

A high performance molten carbonate fuel cell cathode

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A highly-conducting ceramic material, identified as stable in molten carbonate electrolyte, has been fabricated by partial sintering of the powder into porous gas-diffusion electrodes. These have been tested with commercial molten carbonate electrolyte ‘tiles’, to compare performance with that of state-of-the-art NiO cathodes. Although the fabrication technique was quite simple, the resultant La0.8Sr0.2CoO3 electrodes showed kinetic performance equivalent to the NiO. This, or other perovskite or spinel-structure ceramic shown to be totally system compatible in long-term tests, can be formed into effective electrodes to replace NiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Lessing, G. R. Miller and H. Yamada,J. Electrochem. Soc. 133 (1986) 1537.

    Google Scholar 

  2. C. D. Iacovangelo and E. C. Jerabek,J. Electrochem. Soc. 133 (1986) 280.

    Google Scholar 

  3. J. D. Doyon, T. Gilbert and G. Davies,J. Electrochem. Soc. 134 (1987) 3035.

    Google Scholar 

  4. C. E. Baumgartner,J. Electrochem. Soc. 131 8 (1984) 1850.

    Google Scholar 

  5. C. D. Iacovangelo,J. Electrochem. Soc. 133 11 (1986) 2410.

    Google Scholar 

  6. D. A. Shores and P. Singh, in ‘Molten Carbonate Fuel Cell Technology’ (edited by J. R. Selman and T. D. Claar), The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1984) p. 271.

  7. E. T. Ong and T. D. Claar, in ‘Molten Carbonate Fuel Cell Technology’ (edited by J. R. Selman and T. D. Claar), The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1984), p. 54.

  8. A. Gelb and G. Wilemski, ‘Modeling of Long-Term Decay in the Molten Carbonate Fuel Cell’, Final Report EPRIEM-2596, Project 1085-5, September (1982).

  9. H. R. Kunz,J. Electrochem. Soc. 134 (1987) 105.

    Google Scholar 

  10. M. D. Ingram and G. J. Janz,Electrochim. Acta 10 (1965) 783.

    Google Scholar 

  11. C. E. Baumgartner, R. H. Arendt, C. D. Iacovangelo and B. R. Karas,J. Electrochem. Soc. 131 (1984) 2217.

    Google Scholar 

  12. ‘Development of Molten Carbonate Fuel Cell Power Plant’, Final Report DE/ET/17109-20, Vol. 1 (DE85008743) earch (1985) pp. 4–138 to 4–149.

  13. M. D. Franke and J. Winnick,J. Electrochem. Soc. 135 (1988) 1595.

    Google Scholar 

  14. Institute of Gas Technology, ‘Fuel Cell Research on Second Generation Molten Carbonate Systems’, Project 9105 Final Technical Report, April (1979).

  15. Institute of Gas Technology, ‘Fuel Cell Research on Second Generation Molten Carbonate Systems’, Project 8984 Final Status Report, Sept. (1977).

  16. J. Winnick, and P. N. Ross,J. Electrochem. Soc. 128 (1981) 991.

    Google Scholar 

  17. K. J. Vetter, ‘Electrochemical Kinetics,’, Academic Press, New York (1967) pp. 436–438.

    Google Scholar 

  18. H. R. Kunz, L. J. Bregoli and S. T. Szymanski,J. Electrochem. Soc. 131 (1984) 2815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, M., Winnick, J. A high performance molten carbonate fuel cell cathode. J Appl Electrochem 19, 1–9 (1989). https://doi.org/10.1007/BF01039383

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01039383

Keywords

Navigation