Skip to main content
Log in

Optical heterodyning based on a CO2 laser under atmospheric conditions (review)

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. K. F. Hulme, Infrared Phys.,25, No. 1–2, 457 (1985).

    Google Scholar 

  2. V. E. Zuev, Transmittance of the Atmosphere for Visible and Infrared Rays [in Russian], Sov. Radio, Moscow (1966).

    Google Scholar 

  3. V. E. Zuev, Propagation of Visible and Infrared Waves in the Atmosphere [in Russian], Radio i Svyaz′, Moscow (1970).

    Google Scholar 

  4. A. I. Serbin and A. M. Brounshtein, Propagation of IR Laser Radiation in the Atmosphere [in Russian], Obninsk (1971).

  5. L. P. Lazerov, Infrared and Visible-Light Devices for Self-Pointing and Pointing of Aircraft [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  6. B. V. Fedorov, Aircraft Laser Devices and Systems [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  7. R. Hudson, Infrared Systems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  8. M. V. Kabanov, D. M. Kabanov, and S. M. Sakerin, Opt. Atmos.,1, No. 1, 107 (1988).

    Google Scholar 

  9. V. V. Zuev, N. I. P'yanykh, and I. M. Sal'nikov, Zarubezhnaya Radioélektron., No. 7, 3 (1978).

    Google Scholar 

  10. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, et al., Optical Properties of the Atmosphere, AFCRL-72-0497, Bedford, Mass. (Aug. 1972).

  11. V. E. Zuev, N. N. Makogon, Yu. S. Makushkin, et al., Applied Spectroscopy of the Atmosphere. Optical Model of Molecular Atmosphere, Problems of Local Gas Analysis [in Russian], Tomsk (1986).

  12. V. M. Zakharov, O. N. Kostko, L. N. Birich, et al., Laser Sounding of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1988).

    Google Scholar 

  13. M. Huffaker, T. Lawrence, and M. J. Post, Appl. Opt.,23, No. 15, 2523 (1984).

    Google Scholar 

  14. S. York and S. Warner, Air Pollution. Sources and Monitoring [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  15. V. P. Bisyarin, A. V. Sokolov, E. V. Sukhonin, et al., Attenuation of Laser Radiation in Hydrometeors [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. A. A. Mitsel', Yu. N. Ponomarev, and K. M. Firstov, Izv. Akad. Nauk SSSR, Ser. FAO,20, No. 3, 327 (1984).

    Google Scholar 

  17. V. N. Aref'ev, N. V. Goncharov, Kh. K. Kumykov, et al., Trudy Inst. Éksp. Meteorologii,125, No. 19, 89 (1987).

    Google Scholar 

  18. V. N. Aref'ev, V. N. Pogodaev, and N. I. Sizov, Kvantovaya Élektron.,10, No. 3, 496 (1983).

    Google Scholar 

  19. D. Deirmendjian, Scattering of Electromagnetic Radiation by Spherical Polydispersed Particles [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  20. D. Stroben (ed.), Propagation of a Laser Beam in the Atmosphere [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  21. V. N. Aref'ev, Meteorologiya i Gidrologiya, No. 1, 97 (1980).

    Google Scholar 

  22. R. M. Akimenko, V. N. Aref'ev, Yu. N. Baranov, et al., Opt. Atmos.,1, No. 11, 104 (1988).

    Google Scholar 

  23. R. K. Long and J. H. McCoy, JOSA,57, No. 4, 570 (1967).

    Google Scholar 

  24. V. N. Aref'ev and V. D. Dianov-Klokov, Opt. Spektrosk.,42, No. 5, 849 (1977).

    Google Scholar 

  25. K. Bignell, Q. J. R. Metrol. Soc.,96, No. 409, 390 (1970).

    Google Scholar 

  26. N. I. Moskalenko, O. V. Zotov, and V. P. Dugin, Zh. Prikl. Spektrosk.,17, No. 5, 881 (1972).

    Google Scholar 

  27. E. R. Roberts, I. E. A. Selby, and M. L. Biberman, Appl. Opt.15, No. 9, 2085 (1976).

    Google Scholar 

  28. M. S. Shumate, R. T. Mensies, J. S. Margolis, and L. G. Resengren, Appl. Opt.,15, No. 9, 2480 (1976).

    Google Scholar 

  29. V. V. Fomin, Molecular Absorption in the Infrared Transmission Windows [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  30. A. S. Makarov and V. L. Filippov, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,21, No. 3, 368 (1978).

    Google Scholar 

  31. Yu. A. Pkhalagov and V. N. Uzhegov, Opt. Atmos.,1, No. 7, 22 (1988).

    Google Scholar 

  32. R. M. Akimenko, V. N. Aref'ev, and Yu. I. Bogdanov, Opt. Atmos.,1, No. 11, 104 (1988)

    Google Scholar 

  33. E. L. Aleksandrov, I. A. Korol', L. R. Rakipova, et al., Atmospheric Ozone and Global-Climate Change [in Russian], Gidrometeoizdat, Leningrad (1982).

    Google Scholar 

  34. V. A. Smirnov, Introduction to Optical Radioelectronics [in Russian], Sov. Radio, Moscow (1973).

    Google Scholar 

  35. G. V. Rozenberg, Usp. Fiz. Nauk,95, No. 1, 159 (1968).

    Google Scholar 

  36. V. L. Filippov and S. O. Mirumyants, Izv. Akad. Nauk SSSR, FAO,8, No. 12, 103 (1972).

    Google Scholar 

  37. R. Elridge, Appl. Opt., No. 5, 929 (1967).

    Google Scholar 

  38. G. V. Rozenberg, G. I. Gorchakov, Yu. S. Georgievskii, and Yu. S. Lyubovtseva, “ Optical parameters of atmospheric aerosol,” in: Physics of the Atmosphere and the Problem of Climate [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  39. Yu. A. Pkhalagov, “Comparison of empirical models of atmospheric haze and their applicability for calculation of optical radiation,” in: Propagation of Optical Waves in Nonuniform Media [in Russian], Tomsk (1983), p. 134.

  40. V. L. Filippov, A. S. Makarov, and V. P. Ivanov, Izv. Akad. Nauk SSSR, Ser. FAO,15, No. 3, 257 (1979).

    Google Scholar 

  41. Yu. A. Pkhalagov and V. N. Uzhegov, Empirical Model of Above-Water Haze and Propagation of Optical Waves in Nonuniform Media [in Russian], Tomsk (1983), p. 142.

  42. K. Ya. Kondrat'ev, N. I. Moskalenko, and D. V. Pozdnyakov, Atmospheric Aerosol [in Russian], Gidrometeoizdat, Leningrad (1983).

    Google Scholar 

  43. S. D. Andreev, V. E. Zuev, L. S. Ivlev, et al., Izv. Akad. Nauk SSSR, FAO,8, No. 12, 1261 (1972).

    Google Scholar 

  44. V. E. Zuev, M. V. Kabanov, and Yu. A. Pkhalagov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 42 (1972).

    Google Scholar 

  45. Yu. A. Pkhalagov, V. N. Uzhegov, and N. K. Shchelkanov, Izv. Akad. Nauk SSSR, FAO,23, No. 3, 324 (1987).

    Google Scholar 

  46. W. S. Wells, G. Gab, and M. W. Munn, Appl. Opt.,16, No. 3, 654 (1977).

    Google Scholar 

  47. L. J. Roserme and W. D. Jones, Appl. Opt.,24, No. 25, 3487 (1985).

    Google Scholar 

  48. V. E. Zuev and M. V. Kabanov, Transfer of Optical Signals in the Earth's Atmosphere [in Russian], Sov. Radio, Moscow (1977).

    Google Scholar 

  49. G. van de Hulst, Scattering of Light by Small Particles [Russian translation], IL, Moscow (1961).

    Google Scholar 

  50. D. B. Rensch and R. K. Long, Appl. Opt.,9, No. 7, 1563 (1970).

    Google Scholar 

  51. K. S. Shifrin, I. L. Zel'manovich, A. I. Serbin, and V. I. Makkaveev, Voprosy Radioélektron., Ser. Tekh. Provodnoi Svyazi, No. 8, 94 (1969).

    Google Scholar 

  52. O. D. Berteneva, E. I. Dovgyallo, and E. A. Polyakova, Trudy GGO, No. 220, 244 (1967).

    Google Scholar 

  53. P. A. Kazaryan, A. V. Oganesyan, and E. P. Milyutin, Optical Systems for Transmitting Radiation in the Atmospheric Channel [in Russian], Radio i Svyaz', Moscow (1985).

    Google Scholar 

  54. R. C. Harney, Proc. Soc. Photo-Instrum. End.,300, 4 (1981).

    Google Scholar 

  55. V. V. Protopopov and N. D. Ustinov, Infrared Laser Radar Systems [in Russian], Voenizdat, Moscow (1987).

    Google Scholar 

  56. A. Deepak and M. A. Box, Appl. Opt.,17, No. 19, 3169 (1978).

    Google Scholar 

  57. A. V. Sokolov, Radiotekh. Élektron.,5, No. 12, 2463 (1970).

    Google Scholar 

  58. T. S. Chu and D. S. Hogg, Bell Syst. Tech. J.,47, No. 5, 723 (1968).

    Google Scholar 

  59. A. M. Brounshtein, Trudy GGO, No. 496, 113 (1985).

    Google Scholar 

  60. V. I. Tatarskii, Propagation of Waves in a Turbulent Atmosphere [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  61. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  62. D. L. Fried, G. E. Meyers, and M. P. Keister, JOSA,57, No. 6, 787 (1967).

    Google Scholar 

  63. Yu. N. Barannikov, Yu. A. Kravtsov, S. M. Rytov, and V. I. Tatarskii, Usp. Fiz. Nauk,114, No. 11, 415 (1974).

    Google Scholar 

  64. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvili, and V. I. Shishov, Usp. Fiz. Nauk,114, No. 11, 415 (1974).

    Google Scholar 

  65. R. D. Shaft, IEEE Trans. Commun.22, No. 5, 731 (1974).

    Google Scholar 

  66. G. C. Valley and W. P. Brown, Appl. Opt.,21, No. 16, 3002 (1982).

    Google Scholar 

  67. A. K. Majumdar and G. Hideya, Appl. Opt.,21, No. 12, 2229 (1982).

    Google Scholar 

  68. M. E. Gracheva, A. S. Gurvich, S. O. Lomadze, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz.,17, No. 1, 105 (1974).

    Google Scholar 

  69. L. R. Bissonette and R. L. Wizinowich, Appl. Opt.,18, No. 10, 1590 (1979).

    Google Scholar 

  70. K. Furutsu, JOSA, No. 2, 240 (1972).

    Google Scholar 

  71. R. S. V. Gudimetla and J. F. Holmes, JOSA,72, No. 9, 1213 (1982).

    Google Scholar 

  72. R. L. Philips and L. C. Andrews, JOSA, No. 12, 1440 (1981).

    Google Scholar 

  73. D. de Wolf, Proc. IEEE,62, No. 11, 1523 (1974).

    Google Scholar 

  74. E. P. Milyutin and Yu. I. Yaremenko, Radiotekh. Élektron.,25, No. 11, 2273 (1980).

    Google Scholar 

  75. T. Wang and J. W. Strohbehn, JOSA,64, No. 7, 994 (1974).

    Google Scholar 

  76. A. A. Taklaya, in: Abstracts of Reports at the 3rd All-Union Symposium on the Propagation of Laser Radiation in the Atmosphere, Tomsk (1975), p. 181.

  77. A. A. Taklaya, Trudy Tallinskogo Politekhnicheskogo Inst., No. 639, 51 (1987).

    Google Scholar 

  78. A. L. Buck, Appl. Opt.,6, No. 4, 703 (1967).

    Google Scholar 

  79. V. L. Mironov, Propagation of a Laser Beam in a Turbulent Atmosphere [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  80. Z. I. Feizul and Yu. A. Kravtsov, Izv. Vyssh. Uchebn. Zaved., Radiotekh.,10, No. 1, 68 (1967).

    Google Scholar 

  81. A. A. Salen, IEEE J.,QE-3, No. 11, 540 (1967).

    Google Scholar 

  82. H. Hodara, Proc. IEEE,54, No. 3, 368 (1966).

    Google Scholar 

  83. Yu. M. Klimkov, Fundamentals of the Calculation of Optoelectronic Devices with Lasers [in Russian], Sov. Radio, Moscow (1978).

    Google Scholar 

  84. M. S. Belen'kii, I. P. Lukhin, and V. L. Mironov, Radiotekh. Élektron.,31, No. 10, 2091 (1986).

    Google Scholar 

  85. M. S. Belen'kii, V. P. Lukin, V. L. Mironov, and V. V. Pokasov, Coherence of Laser Radiation in the Atmosphere [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  86. V. A. Banakh and V. L. Mironov, Ranging Propagation of Laser Radiation in a Turbulent Atmosphere [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  87. L. A. Kazaryan, Heterodyne Reception of an Optical Signal and Its Application [in Russian], Radiotekhnika, VINITI, Vol. 33, Moscow (1984), p. 176.

    Google Scholar 

  88. V. P. Lukin, V. M. Sazanovich, and S. M. Slobodyan, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,23, No. 6, 721 (1980).

    Google Scholar 

  89. V. A. Banakh and V. L. Mironov, in: 2nd All-Union Conference on Atmospheric Optics, Tomsk (1980), Part 2, p. 48.

  90. V. P. Akesenov, V. A. Banakh, and B. N. Chen, Opt. Spektrosk.,56, No. 5, 864 (1984).

    Google Scholar 

  91. Yu. V. Baiborodin, Introduction to Laser Technology [in Russian], Tekhnika, Kiev (1977).

    Google Scholar 

  92. V. V. Protopopov and N. D. Ustinov, Laser Heterodyning [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  93. N. Gaga and K. Tanaka, Opt. Commun.,53, No. 1, 1 (1985).

    Google Scholar 

  94. J. Y. Wang, Appl. Opt.,21, No. 3, 464 (1982).

    Google Scholar 

  95. J. C. Leader, JOSA,70, 682 (1980).

    Google Scholar 

  96. J. C. Leader, Appl. Opt.,17, No. 17, 1194 (1978).

    Google Scholar 

  97. V. I. Tikhonov, Statistical Radioengineering [in Russian], Sov. Radio, Moscow (1986).

    Google Scholar 

  98. M. A. Krapotkin and V. P. Kozyrev, Opt. Spektrosk.,17, No. 2, 259 (1964).

    Google Scholar 

  99. D. Letalic, I. Renhorn, and O. Steinvall, Appl. Opt.,25, No. 21, 3927 (1986).

    Google Scholar 

  100. A. Crocket, R. M. Jenkins, and M. Jonson, J. Phys. E.,18, No. 2, 133 (1985).

    Google Scholar 

  101. S. T. Shanahon and N. R. Heckenberg, J. Phys. E.,17, No. 8, 640 (1984).

    Google Scholar 

  102. M. C. Wang, W. C. Wang, and X. F. Cheng, in: Conf. Lasers and Electroopt., June 11–12, Washington (1981), S. 1, p. 20.

  103. V. N. Antipov and I. S. Fishman, Paper No. 2811-V86, deposited in VINITI, April 17 (1986).

  104. F. E. Goodwin and M. E. Pedinoff, Appl. Phys. Lett.,8, No. 2, 116 (1966).

    Google Scholar 

  105. V. B. Vergunov, M. I. Vol'nov, and D. A. Tefikov, Prib. Tekh. Éksp., No. 3, 197 (1978).

    Google Scholar 

  106. US Patent No. 4,662,741, MKI G01 s 3/08, published May 5, 1987.

  107. T. Hird, Measurement of Laser Parameters [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  108. V. E. Kirokosyants and V. A. Loginov, Radioélektronika,29, No. 12, 2376 (1984).

    Google Scholar 

  109. French Patent Application No. 2,462,717; MKI G01 s 17/06; published March 20 (1981).

  110. Japanese Patent Application No. 59-21516, MKI G01 s 17/09; published May 21 (1984).

  111. Japanese Patent Application No. 59-28273, MKI G01 s 17/32; published July 11 (1984).

  112. French Patent Application No. 2,543,690; MKI G01 s 17/06; published October 5 (1984).

  113. British Patent No. 1,585,054; MKI G01 s 17/08; published February 25 (1981).

  114. US Patent No. 4,447,149; MKI G01 s 3/08; published May 8 (1984).

  115. British Patent No. 2,108,348; MKI G01 s 17/58; published May 11 (1983).

  116. British Patent No. 2,046,550; MKI G01 s 17/00; published November 12 (1980).

  117. British Patent No. 2,108,348; MKI G01 s 17/58; published May 11 (1983).

  118. Japanese Patent Application No. 57-41696; MKI G01 s 17/00; published September 4 (1982).

  119. British Patent No. 1,602,425; MKI G01 s 17/06; published November 17 (1981).

  120. British Patent No. 2,075,787; MKI G01 s 17/08; published November 18 (1981).

  121. British Patent No. 1,585,054; MKI G01 s 17/08; published February 25 (1981).

  122. British Patent No. 1,585,054; MKI G01 s 17/08; published February 25 (1981).

  123. R. J. L. Lerou, Opt. Laser Technol.,15, No. 3, 153 (1983).

    Google Scholar 

  124. US Patent No. 4,405,230; MKI G01 s 3/08; published September 20 (1983).

  125. German Patent No. 3,142,438; MKI G01 s 9/62; published February 24 (1983).

  126. British Patent No. 1,598,065; MKI G01 s 17/08; published September 16 (1981).

  127. British Patent No. 1,602,345; MKI G01 s 17/08; published November 11 (1981).

  128. W. Alehander, D. Clark, and C. S. Stewart, Opt. Eng.,27, No. 1, 11 (1988).

    Google Scholar 

  129. EPV Patent Application No. 0236761; MKI G01 s 17/10; published September 16 (1987).

  130. J. Dansac, J. L. Meyzonette, and P. Plainchamp, Proc. SPIE,590, 380 (1986).

    Google Scholar 

  131. B. A. Stephan, Proc. SPIE,590, 388 (1986).

    Google Scholar 

  132. US Patent No. 4,611,912; MKI G01 s 3/08; published September 16 (1986).

  133. K. G. Hulme, Opt. Laser Technol.,14, No. 4, 213 (1982).

    Google Scholar 

  134. D. Gamus, M. Quhayoun, and H. Hfheimer, Laser Focus,19, No. 3, 54 (1983).

    Google Scholar 

  135. P. E. Dyer and B. L. Tait, J. Phys. E,16, No. 6, 467 (1983).

    Google Scholar 

  136. R. T. Brown, Appl. Opt.,23, No. 15, 2485 (1984).

    Google Scholar 

  137. A. E. Belyanko, N. I. Lipatov, P. P. Polunin, et al., Kvantovaya Élektron.,11, No. 1, 184 (1984).

    Google Scholar 

  138. USSR Inventor's Certificate No. 679,055; MKI H01 s 3/08; published September 23 (1982).

  139. USSR Inventor's Certificate No. 757,087; MKI H01 s 3/08; published January 7 (1982).

  140. USSR Inventor's Certificate No. 933,355; MKI H01 s 3/08; published October 23 (1981).

  141. French Patent Application No. 2,445,970; MKI G01 s 17/02; published September 5 (1980).

  142. EPV Patent No. 0117983; MKI G01 s 17/02; published September 12 (1984).

  143. US Patent No. 4,380,391; MKI G01 s 3/08; published April 19 (1983).

  144. French Patent Application No. 2,613,826; MKI G01 s 9/62; published October 14 (1988).

  145. US Patent No. 4,783,593; MKI G01 j 1/42; published November 8 (1988).

  146. French Patent Application No. 2,613,831; MKI G01 s 9/62; published October 14 (1988).

  147. D. P. Luk'yanov (ed.), Laser Measuring Systems [in Russian], Radio i Svyaz', Moscow (1981).

    Google Scholar 

  148. H. N. Rutt, Appl. Phys.,28, No. 2–3, 286 (1982).

    Google Scholar 

  149. EPV Patent No. 0127274; MKI G01 s 17/06; published December 5 (1984).

  150. T. Kunikane, M. Ohtsu, T. Nakamura, and T. Tako, Jpn. J. Appl. Phys.,23, Part 1, No. 5, 600 (1984).

    Google Scholar 

  151. US Patent No. 4,665,588; MKI G01 s 3/08; published April 7 (1987).

  152. German Patent No. 209,263; MKI G01 s 3/08; published April 25 (1984).

  153. French Patent Application No. 2,519,771; MKI G01 s 17/06; published July 18 (1983).

  154. A. V. Jelalian, IEEE Spectrum,18, No. 11, 46 (1981).

    Google Scholar 

Download references

Authors

Additional information

Belorussian State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 35, No. 2, pp. 103–129, February, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisenkova, A.M., Khanokh, B.Y. Optical heterodyning based on a CO2 laser under atmospheric conditions (review). Radiophys Quantum Electron 35, 73–92 (1992). https://doi.org/10.1007/BF01038885

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01038885

Keywords

Navigation