Skip to main content
Log in

Kinetics and mechanism of oxidation of DL-leucine by acid permanganate

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The kinetics of oxidation of leucine (LCO2H) by acid permanganate have been followed spectrophotometrically at 525 nm for the disappearance of MnVII and at 420 nm for the appearance of MnIV. The latter absorbance passes through a maximum, signifying the presence of a consecutive reaction involving a MnIV intermediate. The reaction is first order with respect to [MnO 4 ]. The rate constant, k7, has been evaluated at different [LCO2H], [H+] and temperatures, from plots of A 525corr versus time. The overall rate expression satisfying the observed kinetic parameters is

$$\begin{gathered} - \frac{1}{{[Mn^{VII} ]_{tot.} }}\frac{{d[Mn^{VII} ]_{tot.} }}{{dt}} \hfill \\ = {{\{ k\prime _1 [LCO_2 H]_0^{1/2} + k\prime _2 [LCO_2 H]_0^{2} \} } \mathord{\left/ {\vphantom {{\{ k\prime _1 [LCO_2 H]_0^{1/2} + k\prime _2 [LCO_2 H]_0^{2} \} } {[H^ + ]}}} \right. \kern-\nulldelimiterspace} {[H^ + ]}} \hfill \\ \end{gathered} $$

It is found that 8 moles of CO2 are produced and 8 moles of leucine are consumed per mole of permanganate consumed. The decarboxylation involves a cyclic chain reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Cohen,J. Biol. Chem.,119, 333 (1937).

    Google Scholar 

  2. D. E. Green, S. Mii and H. R. Mahler,J. Biol. Chem.,206, 1 (1954).

    Google Scholar 

  3. O. Toussaint, P. Capdevielle and M. Mansuy,Tetrahedron Lett. 25, 3819 (1984).

    Google Scholar 

  4. A. E. Braunstein and M. G. Kritzman,Nature (London),140, 503 (1937).

    Google Scholar 

  5. D. Shemin and R. M. Herbst,J. Am. Chem. Soc.,60, 1951 (1938);J. Biol. Chem.,147, 541 (1943).

    Google Scholar 

  6. B. T. Gowda and D. S. Mahadevappa,J. Chem. Soc., Perkin II, 323 (1983).

    Google Scholar 

  7. M. S. Ramachandran, T. S. Vivekanandam and R. P. M. M. Raj,J. Chem. Soc., Perkin II, 1345 (1984).

    Google Scholar 

  8. M. S. Ramachandran, T. S. Vivekanandam,J. Chem. Soc., Perkin II, 1341 (1984).

    Google Scholar 

  9. B. T. Gowda and R. Vijaya Laxmi Rao,Indian J. Chem.,24A, 1021 (1985).

    Google Scholar 

  10. M. B. Lal and K. K. Banerji,Tetrahedron,41, 6047 (1985).

    Google Scholar 

  11. K. Singh, A. K. Bose, J. N. Tiwari and S. P. Mushran,Ind. J. Chem.,16A, 35 (1978).

    Google Scholar 

  12. M. Bhargava, B. Sethuram and T. Navneeth Rao,Ind. J. Chem.,16A, 651 (1978).

    Google Scholar 

  13. R. A. Sheikh and W. A. Waters,J. Chem. Soc. (B), 968 (1970).

  14. R. S. Verma, M. J. Reddy and V. R. Shastry,J. Chem. Soc. Perkin Trans. II, 469 (1976).

    Google Scholar 

  15. O. G. Pokrovskaya,Izvest Sibirsk, Otdel Akad, Nauk, S.S.S.R.,8, 50 (1959).

    Google Scholar 

  16. J. W. Ladbury and C. F. Cullis,Chem. Rev.,58, 403 (1958).

    Google Scholar 

  17. L. I. Simandi, M. Jaky, C. R. Savage and Z. A. Schelly,J. Am. Chem. Soc.,107, 4220 (1985).

    Google Scholar 

  18. F. Freeman, L. Y. Chang, C. J. Kappas and L. Sumarta,J. Org. Chem.,52, 1460 (1987).

    Google Scholar 

  19. N. Ganapathisubramanian,J. Phys. Chem.,92, 414 (1988).

    Google Scholar 

  20. G. Chandra and S. N. Srivastava,Ind. J. Chem.,11, 773 (1973).

    Google Scholar 

  21. V. S. Rao, B. Sethuram and T. Navneeth Rao,Int. J. Chem. Kinetic,11, 165 (1979).

    Google Scholar 

  22. A. I. Vogel,A Textbook of Quantitative Inorganic Analysis, Longmans Green, London, p. 282, 1964.

    Google Scholar 

  23. F. Fiegl,Spot Test in Organic Analysis, Elsevier, Amsterdam, p. 195, 1966.

    Google Scholar 

  24. M. Yousuf Hussain and Firoz Ahmad,J. Oxidn. Comm.,12, 59 (1989).

    Google Scholar 

  25. M. Yousuf Hussain and Firoz Ahmad,Transition. Metal. Chem.,14, 169 (1989).

    Google Scholar 

  26. R. M. Noyes and D. J. Sibbett,J. Am. Chem. Soc.,75, 767 (1953).

    Google Scholar 

  27. A. W. Adamson,J. Phys. and Colloid Chem., 5293 (1951).

  28. F. C. Tompkins,Trans. Faraday Soc.,38, 128 (1942).

    Google Scholar 

  29. D. Neil Furlong, D. Wells and H. F. Sosse Wolfgang,Aust. J. Chem.,39, 769 (1986).

    Google Scholar 

  30. R. Stewart,Oxidation Mechanisms Applications to Organic Chemistry, W. A. Benjamin, New York, 1964, pp. 103, 177 and 128.

    Google Scholar 

  31. D. S. Mahadevappa, K. S. Rangappa, N. M. M. Gowda and B. T. Gowda,J. Phys. Chem.,85, 3651 (1981).

    Google Scholar 

  32. J. R. Sutter and K. B. Park,J. Phys. Chem.,88, 770 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, M.Y., Ahmad, F. Kinetics and mechanism of oxidation of DL-leucine by acid permanganate. Transition Met Chem 15, 185–190 (1990). https://doi.org/10.1007/BF01038373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01038373

Keywords

Navigation