Advertisement

Radiophysics and Quantum Electronics

, Volume 35, Issue 5, pp 261–266 | Cite as

Dynamics of feigenbaum systems with unidirectional coupling near onset of chaos. The bicritical attractor

  • A. P. Kuznetsov
  • S. P. Kuznetsov
  • I. R. Sataev
Article
  • 17 Downloads

Abstract

It is proposed that a bicritical point exists in the plane of the control parameters of two logistic maps with unidirectional coupling where the lines of transition to chaos in both subsystems converge. The global scaling properties (σ-functions, f(α) spectra, and generalized dimensions) of bicritical dynamics are examined. It is shown that bicriticality can also be observed in chains of more than two cells.

Keywords

Control Parameter Generalize Dimension Scaling Property Global Scaling Unidirectional Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    K. Kaneko, Progr. Theor. Phys.,72, 480 (1984).Google Scholar
  2. 2.
    J. P. Crutchfield and K. Kaneko, “Phenomenology of spatio-temporal chaos,” in: Directions in Chaos, Hao Bai-lin (ed.), World Scientific Publ. Co., Singapore (1987), p. 272.Google Scholar
  3. 3.
    I. Waller and R. Kapral, Phys. Rev.,A30, 2047 (1984).Google Scholar
  4. 4.
    L. A. Bunimovich and Ya. G. Sinai, Nonlinearity,1, 491 (1988).Google Scholar
  5. 5.
    S. P. Kuznetsov, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,25, 1366 (1982).Google Scholar
  6. 6.
    K. Kaneko, Phys. Lett.,A111, 321 (1985).Google Scholar
  7. 7.
    I. S. Aranson, A. V. Gaponov-Grekhov, and M. I. Rabinovich, Physica,D33, 1 (1988).Google Scholar
  8. 8.
    M. J. Feigenbaum, J. Status. Phys.,21, 669 (1979).Google Scholar
  9. 9.
    M. J. Feigenbaum, Commun. Math. Phys.,77, 65 (1980).Google Scholar
  10. 10.
    E. V. Vul, Ya. G. Sinai, and K. M. Khanin, Usp. Mat. Nauk,39, No. 3, 3 (1984).Google Scholar
  11. 11.
    B. P. Bezruchko, Yu. V. Gulyaev, et al., Dokl. Akad. Nauk SSSR,287, 619 (1986).Google Scholar
  12. 12.
    O. E. Rössler, Phys. Lett.,A71, 155 (1979).Google Scholar
  13. 13.
    S. P. Kuznetsov, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,33, No. 7, 788 (1990).Google Scholar
  14. 14.
    J. D. Farmer, Physica,D4, 366 (1982).Google Scholar
  15. 15.
    T. S. Halsey, M. H. Jensen, et al., Phys. Rev.,A33 1141 (1986).Google Scholar
  16. 16.
    B. Huberman and A. Zisook, Phys. Rev. Lett.,26, 626 (1981); M. Nauenberg and J. Rudnik, Phys. Rev.,B24, 493 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. P. Kuznetsov
  • S. P. Kuznetsov
  • I. R. Sataev

There are no affiliations available

Personalised recommendations