Skip to main content
Log in

Chinook salmon NADP+-dependent cytosolic isocitrate dehydrogenase: Electrophoretic and genetic dissection of a complex isozyme system and geographic patterns of variation

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Species in the genusOncorhynchus express complicated isocitrate dehydrogenase (IDHP) isozyme patterns in many tissues. Subcellular localization experiments show that the electrophoretically distinct isozymes of low anodal mobility expressed predominantly in skeletal and heart muscle are mitochondrial forms (mIDHP), while the more anodal, complex isolocus isozyme system predominant in liver and eye is cytosolic (sIDHP). The two loci encoding sIDHP isozymes are considered isoloci because the most common allele at one of these loci cannot be separated electrophoretically from the most common allele of the other. Over 12 electrophoretically detectable alleles are segregating at the twosIDHP* loci in chinook salmon. Careful electrophoretic comparisons of the sIDHP isozyme patterns of muscle, eye, and liver extracts of heterozygotes reveal marked differences between the tissues with regard to both relative isozyme staining and the expression of several common alleles. Presumed single-dose heterozygotes at the sIDHP isolocus isozyme system exhibit approximate 9:6:1 ratios of staining intensity in liver and eye, while they exhibit approximate 1:2:1 ratios in skeletal muscle. The former proportions are consistent with the equal expression of two loci (isolocus expression), while the latter are consistent with the expression of a single locus. Screening of over 10,000 fish from spawning populations and mixed-stock fishery samples revealed that certain variant alleles (*127, *50) are detectable only in liver and eye, while other alleles (*129, *94, and *74) are strongly expressed in muscle, eye, and liver. The simplest explanation for these observations is that the “isolocus” sIDHP system of chinook salmon (and that of steelhead and rainbow trout) results from the expression of two distinct loci (sIDHP-1* andsIDHP-2*) that have the same common allele (as defined by electrophoretic mobility). IDHP expression in skeletal muscle is due to the nearly exclusive expression of thesIDHP-1* locus, while IDHP expression in eye and liver tissues is due to high levels of expression of bothsIDHP-1* andsIDHP-2*—giving rise to the isolocus situation in these latter tissues. Direct inheritance studies confirm this model of two genetically independent (disomic) loci encoding sIDHP in chinook salmon. Extensive geographic surveys of chinook salmon populations from California to British Columbia reveal marked differences in allele frequencies at bothsIDHP-1* andsIDHP-2* and considerably more interpopulation differentiation than was recognized previously when sIDHP was treated as an isolocus system with only five recognized alleles. These observations, coupled with examples of allele frequencies from several Washington fisheries, demonstrate the value of this refined interpretation of sIDHP isozyme expression to the GSI analysis of population structure and mixed-stock fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebersold, P. B., Winans, G. A., Teel, D. J., Milner, G. B., and Utter, F. M. (1987). Manual for starch gel electrophoresis: Complete procedures for detection of genetic variation. NOAA Technical Report NMFS 61.

  • Allendorf, F. W. (1978). Protein polymorphism and the rate of loss of duplicate gene expression.Nature 27276.

    Google Scholar 

  • Allendorf, F. W., and Thorgaard, G. H. (1984). Tetraploidy and the evolution of salmonid fishes. In Turner, B. J. (ed.),Evolutionary Genetics of Fishes Plenum, New York, pp. 1–53.

    Google Scholar 

  • Allendorf, F. W., and Utter, F. M. (1973). Gene duplication within the family Salmonidae: Disomic inheritance of two loci reported to be tetrasomic in rainbow trout.Genetics 74647.

    Google Scholar 

  • Allendorf, F. W., and Utter, F. M. (1976). Gene duplication in the family Salmonidae. III. Linkage between two duplicated loci coding for aspartate aminotransferase in the cut-throat trout (Salmo clarki).Hereditas 8219.

    Google Scholar 

  • Allendorf, F. W., Utter, F. M., and May, B. P. (1975). Gene duplication within the family Salmonidae. II. Detection and determination of the genetic control of duplicate loci through inheritance studies and the examination of populations. In Markert, C. L. (ed.),Isozymes IV. Genetics and Evolution Academic Press, New York, pp. 415–432.

    Google Scholar 

  • Andersson, L., Ryman, N., and Stahl, G. (1983). Protein loci in the Arctic charr,Salvelinus alpinus L.: Electrophoretic expression and genetic variability patterns.J. Fish Biol. 2375.

    Google Scholar 

  • Aspinwall, N. (1974). Genetic analysis of North American populations of the pink salmon,Oncorhynchus gorbuscha, possible evidence for the neutral mutation-random drift hypothesis.Evolution 28295.

    Google Scholar 

  • Avise, J. C., and Kitto, G. B. (1973). Phosphoglucose isomerase gene duplication in the bony fishes: An evolutionary history.Biochem. Genet. 8113.

    Google Scholar 

  • Bailey, G. S., and Wilson, A. C. (1968). Homologies between isoenzymes of fishes and those of higher vertebrates: Evidence for multiple H4 lactate dehydrogenase in trout.J. Biol. Chem. 2435843.

    Google Scholar 

  • Bailey, G. S., Wilson, A. C., Halver, J. E., and Johnson, C. L. (1970). Multiple forms of supernatant malate dehydrogenase in salmonid fishes. Biochemical, immunological, and genetic studies.J. Biol. Chem. 2455927.

    Google Scholar 

  • Bailey, G. S., Tsuyuki, H., and Wilson, A. C. (1976). The number of genes for lactate dehydrogenase in salmonid fishes.J. Fish. Res. Bd. Can. 33760.

    Google Scholar 

  • Bartley, D. M., and Gall, G. A. E. (1990). Genetic structure and gene flow in chinook salmon populations of California.Trans. Am. Fish. Soc. 11955.

    Google Scholar 

  • Beacham, T. D., Withler, R. E., and Gould, A. P. (1985). Biochemical genetic stock identification of chum salmon (Oncorhynchus keta) in Southern British Columbia.Can. J. Fish. Aquat. Sci. 42437.

    Google Scholar 

  • Beaumont, A. R., and Beveridge, C. M. (1983). Resolution of phosphoglucomutase isozymes inMytilis edulis L.Mar. Biol. Lett. 497.

    Google Scholar 

  • Casselman, J. M., Collins, J. J., Crossman, E. J., Ihssen, P. E., and Spangler, G. R. (1981). Lake whitefish (Coregonus clupeaformis) stocks of the Ontario waters of Lake Huron.Can. J. Fish. Aquat. Sci. 381772.

    Google Scholar 

  • Clayton, J. W., and Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis.J. Fish. Res. Bd. Can. 291169.

    Google Scholar 

  • Clayton, J. W., Franzin, W. G., and Tretiak, D. N. (1973). Genetics of glycerol-3-phosphate dehydrogenase isozymes in white muscle of lake whitefish (Coregonus clupeaformis).J. Fish. Res. Bd. Can. 30187.

    Google Scholar 

  • Cooper, D. W. (1968). The significance level in multiple tests made simultaneously.Heredity 23614.

    Google Scholar 

  • Coyne, J. (1982). Gel electrophoresis and cryptic protein variation.Isozymes Curr. Topics Biol. Med. Res. 61.

    Google Scholar 

  • Cross, T. F., and Payne, R. H. (1977). NADP-isocitrate dehydrogenase polymorphism in the Atlantic salmonSalmo salar.J. Fish Biol. 11493.

    Google Scholar 

  • Cross, T. F., and Ward, R. D. (1980). Protein variation and duplicate loci in the Atlantic salmon,Salmo salar L.Genet. Res. 36147.

    Google Scholar 

  • Crozier, W. W., and Moffett, I. J. J. (1990). Inheritance of allozymes in Atlantic salmon (Salmo salar L.).Aquaculture 88 253.

    Google Scholar 

  • Davisson, M. T., Wright, J. E., and Atherton, L. M. (1973). Cytogenetic analysis of pseudolinkage of LDH loci in the teleost genusSalvelinus.Genetics 73645.

    Google Scholar 

  • Engel, W., Op't Hof, J., and Wolf, U. (1970). Genduplikation durch polyploide Evolution: Die Isoenzyme der Sorbitdehydrogenase bei herings- und lachsartigen Fischen (Isospondyli).Humangenetik 9157.

    Google Scholar 

  • Engel, W., Schmidtke, J., and Wolf, U. (1971). Genetic variation of α-glycerophosphate—dehydrogenase isoenzymes in clupeoid and salmonoid fish.Experientia 271489.

    Google Scholar 

  • Fujio, Y., Tsuyuki, H., and Sasaki, N. (1985). Loss of duplicated gene expression in Japanese char,Salvelinus pluvius.Tohoku J. Agr. Res. 3635.

    Google Scholar 

  • Gharrett, A. J., Shirley, S. M., and Tromble, G. R. (1987). Genetic relationships among populations of Alaskan chinook salmon (Oncorhynchus tshawytscha).Can. J. Fish. Aquat. Sci. 44765.

    Google Scholar 

  • Hinegardner, R. (1968). Evolution of cellular DNA content in teleost fishes.Am. Nat. 102517.

    Google Scholar 

  • Hinegardner, R., and Rosen, D. E. (1972). Cellular DNA content and the evolution of teleostean fishes.Am. Nat. 106621.

    Google Scholar 

  • Holmes, R. S., and Markert, C. L. (1969). Immunochemical homologies among subunits of trout lactate dehydrogenase isozymes.Proc. Natl. Acad. Sci. USA 64205.

    Google Scholar 

  • Hunter, G. A., Donaldson, E. M., Goetz, F. W., and Edgell, P. R. (1982). Production of all female and sterile groups of coho salmon (Oncorhynchus kisutch) and experimental evidence of male heterogamety.Trans. Am. Fish. Soc. 111367.

    Google Scholar 

  • Ihssen, P. E., Evans, D. O., Christie, W. J., Reckahn, J. A., and DesJardine, R. L. (1981). Life history, morphology, and electrophoretic characteristics of five allopatric stocks of lake whitefish (Coregonus clupeaformis) in the Great Lakes region.Can. J. Fish. Aquat. Sci. 381790.

    Google Scholar 

  • Johnson, G. B. (1977). Assessing electrophoretic similarity: The problem of hidden heterogeneity.Annu. Rev. Ecol. Syst. 8309.

    Google Scholar 

  • Johnson, K. R., Wright, J. E., Jr., and May, B. (1987). Linkage relationships reflecting ancestral tetraploidy in salmonid fish.Genetics 116579.

    Google Scholar 

  • Johnstone, R., Simpson, T. H., Youngson, A. F., and Whitehead, C. (1979). Sex reversal in salmonid culture. III. The progeny of sex-reversed rainbow trout.Aquaculture 1813.

    Google Scholar 

  • Kornfield, I., Beland, K. F., Moring, J. R., and Kircheis, F. W. (1981). Genetic similarity among endemic arctic char (Salvelinus alpinus) and implications for their management.Can. J. Fish. Aquat. Sci. 3832.

    Google Scholar 

  • Lim, S. T., Kay, R. M., and Bailey, G. S. (1975). Lactate dehydrogenase isozymes of salmonid fish. Evidence for unique and rapid functional divergence of duplicated H4 lactate dehydrogenases.J. Biol. Chem. 2501700.

    Google Scholar 

  • Lynch, J. C., and Vyse, E. R. (1979). Genetic variability and divergence in grayling,Thymallus arcticus.Genetics 92263.

    Google Scholar 

  • Marsden, J. E., Krueger, C. C., Kincaid, H. L., and May, B. (1987). Inheritance of duplicated fumarase and phosphoglucomutase loci in lake trout (Salvelinus namaycush).Heredity 58365.

    Google Scholar 

  • May, B., Utter, F. M., and Allendorf, F. W. (1975). Biochemical genetic variation in pink and chum salmon.J. Hered. 66227.

    Google Scholar 

  • May, B., Wright, J. E., and Stoneking, M. (1979). Joint segregation of biochemical loci in Salmonidae: Results from experiments withSalvelinus and review of the literature on other species.J. Fish. Res. Bd. Can. 361114.

    Google Scholar 

  • May, B., Stoneking, M., and Wright, J. E. (1980). Joint segregation of biochemical loci in Salmonidae. II. Linkage associations from a hybridized Salvelinus genome (S. namaycush × S. fontinalis).Genetics 95707.

    Google Scholar 

  • May, B., Wright, J. E., and Johnson, K. R. (1982). Joint segregation of biochemical loci in Salmonidae. III. Linkage associations in Salmonidae including data from rainbow trout (Salmo gairdneri).Biochem. Genet. 2029.

    Google Scholar 

  • Morizot, D. C., and Siciliano, M. J. (1984). Gene mapping in fishes and other vertebrates. In Turner, B. J. (ed.),Evolutionary Genetics of Fishes Plenum, New York, pp. 173–234.

    Google Scholar 

  • Numachi, K-I., Matsumiya, Y., and Sato, R. (1972). Duplicate genetic loci and variant forms of malate dehydrogenase in chum salmon and rainbow trout.Bull. Jap. Soc. Sci. Fish. 38699.

    Google Scholar 

  • Ohno, S. (1970).Evolution by Gene Duplication Springer-Verlag, New York.

    Google Scholar 

  • Ohno, S., Wolf, U., and Atkin, N. B. (1968). Evolution from fish to mammals by gene duplication.Hereditas 59169.

    Google Scholar 

  • Okazaki, T. (1981). Geographical distribution of allelic variations of enzymes in chum salmon,Oncorhynchus keta, populations of North America.Bull. Jap. Soc. Sci. Fish. 47507.

    Google Scholar 

  • Okazaki, T. (1982a). Genetic study on population structure in chum salmon (Oncorhynchus keta).Bull. Far Seas Fish. Res. Lab. 1925.

    Google Scholar 

  • Okazaki, T. (1982b). Geographical distribution of allelic variations of enzymes in chum salmonOncorhynchus keta, river populations of Japan and the effects of transplantation.Bull. Jap. Soc. Sci. Fish. 481525.

    Google Scholar 

  • Perriard, J. C., Scholl, A., and Eppenberger, H. M. (1972). Comparative studies on creatine kinase isozymes from skeletal-muscle and stomach of trout.J. Exp. Zool. 182119.

    Google Scholar 

  • Reinitz, G. L. (1977). Inheritance of muscle and liver types of supernatant NADP-dependent isocitrate dehydrogenase in rainbow trout (Salmo gairdneri).Biochem. Genet. 15445.

    Google Scholar 

  • Reisenbichler, R. R., and Phelps, S. R. (1987). Genetic variation in chinook,Oncorhynchus tshawytscha, and coho,O. kisutch, salmon from the north coast of Washington.Fish. Bull. 85681.

    Google Scholar 

  • Ropers, H.-H., Engel, W., and Wolf, U. (1973). Inheritance of the S-form of NADP-dependent isocitrate dehydrogenase polymorphism in rainbow trout. In Schroder, J. H. (ed.),Genetics and Mutagenesis of Fish Springer-Verlag, New York, pp. 319–327.

    Google Scholar 

  • Schaal, B. A., and Anderson, W. W. (1974). An outline of techniques for starch gel electrophoresis of enzymes from the American oysterCrassostrea virginica Gmelin. Technical Report of the Georgia Marine Science Center 74-3.

  • Scholl, A., and Eppenberger, H. M. (1971). Patterns of isoenzymes of creatine kinase in teleostean fish.Comp. Biochem. Physiol. 42B221.

    Google Scholar 

  • Schreck, C. B., Li, H. W., Hjort, R. C., and Sharpe, C. S. (1986). Stock identification of Columbia River chinook salmon and steelhead trout. Final Report DE-A179-83BP13499. Bonneville Power Administration, Portland, Ore.

    Google Scholar 

  • Seeb, J. E., and Seeb, L. W. (1986). Gene mapping of isozyme loci in chum salmon.J. Hered. 77399.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old field mouse (Peromyscus polionotus).Stud. Genet. VI Univ. Tex. Publ. 7103, p. 49.

  • Shaklee, J. B., and Keenan, C. P. (1986). A practical laboratory guide to the techniques and methodology of electrophoresis and its application to fish fillet identification. Report 177, CSIRO, Australia, Marine Laboratories.

    Google Scholar 

  • Shaklee, J. B., Busack, C., Marshall, A., and Phelps, S. (1989). Genetic stock identification analysis of three 1988 Washington ocean and Strait of Juan de Fuca chinook salmon fisheries. GSI Summary Report 89-2, Washington Department of Fisheries, Olympia.

    Google Scholar 

  • Shaklee, J. B., Allendorf, F. W., Morizot, D. C., and Whitt, G. S. (1990a). Gene nomenclature for protein-coding loci in fish.Trans. Am. Fish. Soc. 1192.

    Google Scholar 

  • Shaklee, J. B., Busack, C., Marshall, A., Miller, M., and Phelps, S. R. (1990b). The electrophoretic analysis of mixed-stock fisheries of Pacific salmon.Prog. Clin. Biol. Res. 344235.

    Google Scholar 

  • Shaklee, J. B., Phelps, S. R., and Salini, J. (1990c). Analysis of fish stock structure and mixed-stock fisheries by the electrophoretic characterization of allelic H. (ed.),Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management CRC Press, Boca Raton, Fla., pp. 174–196.

    Google Scholar 

  • Shaklee, J. B., Klaybor, D. C., Young, S., and White, B. A. (1991). Genetic stock structure of odd-year pink salmon (Oncorhynchus gorbuscha, Walbaum) from Washington and British Columbia and potential mixed-stock fisheries applications.J. Fish Biol. 39 (Suppl. A):21.

    Google Scholar 

  • Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes—A compilation of recipes.Biochem. Genet. 4297.

    Google Scholar 

  • Singh, R. S., Hubby, J. L., and Throckmorton, L. H. (1975). The study of genic variation by electrophoretic and heat denaturation techniques at the octanol dehydrogenase locus in members of theDrosophila virilis group.Genetics 80637.

    Google Scholar 

  • Singh, R. S., Lewontin, R. C., and Felton, A. A. (1976). Genetic heterogeneity within electrophoretic “alleles” of xanthine dehydrogenase inDrosophila pseudoobscura.Genetics 84609.

    Google Scholar 

  • Stegeman, J. J., and Goldberg, E. (1972). Inheritance of hexose 6-phosphate dehydrogenase polymorphism in brook trout.Biochem. Genet. 7279.

    Google Scholar 

  • Stoneking, M., May, B., and Wright, J. E. (1979). Genetic variation, inheritance, and quaternary structure of malic enzyme in brook trout (Salvelinus fontinalis).Biochem. Genet. 17599.

    Google Scholar 

  • Suiter, K. A., Wendel, J. F., and Case, J. S. (1983). LINKAGE-1: A PASCAL computer program for the detection and analysis of genetic linkage.J. Hered. 74203.

    Google Scholar 

  • Taggart, J. B., and Ferguson, A. (1984). Allozyme variation in the brown trout (Salmo trutta L.): Single locus and joint segregation inheritance studies.Heredity 53339.

    Google Scholar 

  • Taggart, J., Ferguson, A., and Mason, F. M. (1981). Genetic variation in Irish populations of brown trout (Salmo trutta L.): Electrophoretic analysis of allozymes.Comp. Biochem. Physiol. 69B393.

    Google Scholar 

  • Thorgaard, G. H. (1977). Heteromorphic sex chromosomes in male rainbow trout.Science 196900.

    Google Scholar 

  • Thorgaard, G. H. (1978). Sex chromosomes in the sockeye salmon: A Y-autosome fusion.Can. J. Genet. Cytol. 20349.

    Google Scholar 

  • Thorgaard, G. H., and Gall, G. A. E. (1979). Adult triploids in a rainbow trout family.Genetics 93961.

    Google Scholar 

  • Todd, T. N. (1981). Allelic variability in species and stocks of Lake Superior ciscoes (Coregoninae).Can. J. Fish. Aquat. Sci. 381808.

    Google Scholar 

  • Utter, F. M., Allendorf, F. W., and May, B. (1979). Genetic basis of creatine kinase isozymes in skeletal muscle of salmonid fishes.Biochem. Genet. 171079.

    Google Scholar 

  • Utter, F., Teel, D., Milner, G., and McIsaac, D. (1987a). Genetic estimates of stock compositions of 1983 chinook salmon harvests off the Washington Coast and the Columbia River.Fish. Bull. 8513.

    Google Scholar 

  • Utter, F., Aebersold, P., and Winans, G. (1987b). Interpreting genetic variation detected by electrophoresis. In Ryman, N., and Utter, F. (eds.),Population Genetics and Fishery Management Washington Sea Grant Program, University of Washington Press, Seattle, pp. 21–46.

    Google Scholar 

  • Utter, F., Milner, G., Stahl, G., and Teel, D. (1989). Genetic population structure of chinook salmon,Oncorhynchus tshawytscha, in the Pacific Northwest.Fish. Bull. 87239.

    Google Scholar 

  • Vuorinen, J. (1984a). Duplicate loci for supernatant and mitochondrial malic enzymes in vendace,Coregonus albula (L.).Comp. Biochem. Physiol. 78B63.

    Google Scholar 

  • Vuorinen, J. (1984b). Electrophoretic expression of genetic variation and duplicate gene activity in vendace,Coregonus albula (Salmonidae).Hereditas 10185.

    Google Scholar 

  • Waples, R. S. (1988). Estimation of allele frequencies at isoloci.Genetics 118317.

    Google Scholar 

  • Waples, R. S., and Aebersold, P. B. (1990). Treatment of data for duplicated gene loci in mixed-stock fishery analysis.Can. J. Fish. Aquat. Sci. 472092.

    Google Scholar 

  • Weir, B. S. (1990).Genetic Data Analysis Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Wolf, U., Engel, W., and Faust, J. (1970). Zum Mechanismus der Diploidisierung in der Wirbeltierevolution: Koexistenz von tetrasomen und disomen Genloci der Isozitrat-Dehydrogenasen bei der Regenbogenforelle (Salmo irideus).Humangenetik 9150.

    Google Scholar 

  • Wright, J. E., May, B., and Lee, G. M. (1980). Pseudolinkage of the duplicate loci for supernatant aspartate aminotransferase in brook trout,Salvelinus fontinalis.Heredity 71223.

    Google Scholar 

  • Wright, J., Johnson, K., Hollister, A., and May, B. (1983). Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonids.Isozymes Curr. Topics Biol. Med. Res. 10239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by funds from the U.S. Pacific Salmon Treaty Act, the Anadromous Fish Act, and the State of Washington General Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaklee, J.B., Phelps, S.R. Chinook salmon NADP+-dependent cytosolic isocitrate dehydrogenase: Electrophoretic and genetic dissection of a complex isozyme system and geographic patterns of variation. Biochem Genet 30, 455–489 (1992). https://doi.org/10.1007/BF01037586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01037586

Key words

Navigation