Skip to main content
Log in

Measurements of diurnal heat exchange on the Quelccaya Ice Cap, Peruvian Andes

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Measurements of the surface heat budget were conducted on an ice cap in the Andes of Southern Peru at 5645 m during an expedition in July 1977. Because of the high surface albedo, net software radiative gain is nearly offset by the longwave loss in the average over the diurnal cycle. The diurnal temperature wave has at the surface an amplitude of about 5°C, and by 50 cm depth this is nearly dampened out. During the day, the shortwave radiative gain is in part used to balance the longwave loss, some heat is stored in the top snow layer and lost by sensible heat transfer to the overlying atmosphere, and the greater part fuels the sublimation. At night, the longwave radiative loss is not completely compensated by heat depletion and downward directed sensible heat transfer. This deficit is made up by the downward transfer of latent heat, resulting in heat release at the surface and deposition. Regarding the mass balance, the nighttime deposition approximately cancels the daytime sublimation. At lower elevations of the ice cap, albedo is much less, allowing larger absorption of solar radiation. As a consequence, more energy is available for ablation. Melting occurs during the day, so that re-freezing and concurrent latent heat release can help to compensate the longwave radiative loss at night.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • de la Casinrère, A. C., 1974: Heat exchange over a melting snow surface.J. Glaciol.,13, 67, 55–72.

    Google Scholar 

  • Fleagle, R. G., Businger, J. A., 1963:An Introduction to Atmospheric Physics. New York, London: Academic Press, 346 pp.

    Google Scholar 

  • Francou, B., Ribstein, P., Saravia, R., Tiriau, E., 1995: Monthly balance and water discharge of an intertropical glacier, the Zongo Glacier, Cordillera Real, Bolivia, 16°S.J. Glaciol.,41 (137), 61–67.

    Google Scholar 

  • Georgi, J., 1956: Meteorologischer Universal-Strahlungsmesser mit Solarimetersäule Moll-Gorczynski.Meteorol. Rdsch.,9, 89–92.

    Google Scholar 

  • Greuell, W., Oerlemans, J., 1989: Energy balance calculations on and near Hintereisferner (Austria) and an estimate of the effect of greenhouse warming on ablation pp. 305–323. In: Oerlemans, J. (ed.)Glacier Fluctuations and Climatic Change. Dordrecht, Boston, London: Kluwer, 417 pp.

    Google Scholar 

  • Grenfell, T.C., Warren, S.G., Mullen, P.C., 1994: Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths.JGR-Atmospheres.99 (D9), 18669–18684.

    Google Scholar 

  • Hastenrath, S., 1978: Heat budget measurements on the Quelccaya Ice Cap. Peruvian Andes.J. Glaciol.,20, 85–97

    Google Scholar 

  • Hastenrath, S., 1983: Diurnal thermal forcing and hydrological response of Lewis Glacier, Mount Kenya.Arch. Met. Geophys. Biok., Ser. A,32, 361–371.

    Google Scholar 

  • Hastenrath, S., Koci, B., 1981: Micro-morphology of the snow surface at the Quelccaya Ice Cap, Peru.J. Glaciol.,27, 423–428

    Google Scholar 

  • Hastenrath, S., Patnaik, J.K., 1980: Radiation measurements at Lewis Glacier, Mount Kenya.J. Glaciol.,25, 439–444.

    Google Scholar 

  • Hay, J. E., Fitzharris, B. B., 1988: A comparison of the energy-balance and bulk-aerodynamic approaches for estimating glacier melt.J. Glaciol.,34, 145–153.

    Google Scholar 

  • Konzelmann, T., Braithwaite, R. J., 1995: Variations of ablation, albedo and energy balance at the margin of the Greenland ice sheet, Kronprins Christian Land, eastern north Greenland.J. Glaciol.,41, (137), 174–182.

    Google Scholar 

  • Konzelmann, T., Ohmura, A., 1995: Radiative fluxes and their impact on the energy balance of the Greenland ice sheet.J. Glaciol.,41 (139), 490–502.

    Google Scholar 

  • Marshall, S. E., 1989: A physical parameterization of snow albedo for use in climate models. National Center for Atmospheric Research, Cooperative Thesis No. 123, NCAR/CT-123, Boulder, Co, 160 pp.

  • Munro, D.S., 1989: Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation.J. Glaciol.,35, 343–348.

    Google Scholar 

  • Munro, D. S., 1991: A surface energy balance model of glacier melt and net balance.Int. J. Climatol.,11, 689–700.

    Google Scholar 

  • Ohata, T., 1992: An evaluation of scale-dependent effects of atmosphere-glacier interactions on heat supply to glaciers.Annals Glaciol.,16, 115–122.

    Google Scholar 

  • Ohno, H., Ohata, T., Higuchi, K., 1992: The influence of humidity on ablation of continental-type glaciers.Annals Glaciol.,16, 107–114.

    Google Scholar 

  • Priestley, C. H. B., 1959:Turbulent Transfer in the Lower Atmosphere, Chicago, London: University of Chicago press, 130 pp.

    Google Scholar 

  • Ribstein, P., Francou, B., Rigaudière, P., Saravia, R., 1995: Variabilidad climática y modelización hidrológica del Glaciar Zongo, Bolivia.Bull. Inst. Francais d' Études Andines,24 (3), 639–649.

    Google Scholar 

  • Sellers, W.D., 1965:Physical Climatology University of Chicago Press, 272 pp.

  • Skeib, G., 1961: Bericht über die meteorologischen Arbeiten während der glaziologischen Expedition der DDR im Sommer 1958 auf dem Zentralen Tujuksu-Gletscher im Transilischen Alatau (Tienschan-Gebirge).Zeitschrift fur Meteorologie,15, 255–263.

    Google Scholar 

  • Skeib, G., 1962: Zum Strahlungs-und Wärmehaushalt des Zentralen Tujuksu-Gletschers in Tienschan-Gebirge.Zeitschrift für Meteorologie,16, 1–9.

    Google Scholar 

  • Sutton, O. G., 1953:Micrometeorology, New York, Toronto, London: McGraw Hill, 333 pp.

    Google Scholar 

  • Warren, S. G., Wiscombe, W. J., 1980: A model for the spectral albedo of snow. II. snow containing atmospheric aerosols.J. Atmos. Sci.,37, 2734–2745.

    Google Scholar 

  • Wiscombe, W. J., Warren, S. G., 1980: A model for the spectral albedo of snow. I: pure snow.J. Atmos. Sci.,37, 2712–2733.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastenrath, S. Measurements of diurnal heat exchange on the Quelccaya Ice Cap, Peruvian Andes. Meteorl. Atmos. Phys. 62, 71–78 (1997). https://doi.org/10.1007/BF01037480

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01037480

Keywords

Navigation