Skip to main content
Log in

Mesoscale surface-wind characteristics and potential gravity-wave formation during cross-Alpine airflow

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Mesoscale flow characteristics in the Alpine region are deduced from a set of daily large-scale analyses (1981–1990) by means of statistical-dynamical downscaling. This method utilizes the results of a large number of mesoscale numerical simulations in combination with known statistics of the forcing large-scale conditions. The investigation is restricted to cross-Alpine large-scale flow from 165 to 265 degrees at 500 hPa. Such types of flow are favourable to south foehn.

The results provide model-based climatological estimates of surface wind direction and upper-level gravity-wave formation at a horizontal resolution of 20 and 10 km. Simulated surface wind roses agree well with observations and show a dominance of low-level flow around the Alps with bimodal frequency distributions of wind direction north and south of the mountains. The areas where splitted flows preferably merge are identified. Gravity waves are most likely to occur above the western parts of the Alps. A secondary maximum of likelihood was found above Tyrol and Trentino. Surface wind roses and gravity-wave formation are both checked with respect to their sensitivity to season (spring vs. autumn) and large-scale flow direction (south to southwest vs. southwest to west).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebischer, U., Schär, C., 1994: High-resolution simulations of low-level features in the Alpine region.Ann. Meteor.,30, 125–128.

    Google Scholar 

  • Binder, P. Schär, C. (eds.), 1995: Mesoscale Alpine Programme (MAP)-Design Proposal. Obtainable from Swiss Meteorological Institute, CH-8044 Zürich, Switzerland.

  • Bretherton, F. P., 1969: Momentum transport by gravity waves.Quart. J. Roy. Meteor. Soc.,95, 213–243.

    Google Scholar 

  • Chen, W.-D., Smith, R. B., 1987: Blocking and deflection of airflow by the Alps.Mon. Wea. Rev.,115, 2578–2597.

    Google Scholar 

  • Egger, J., 1995: Regional statistical-dynamical climate modelling: Tests.Beitr. Phys. Atmos.,68, 281–289.

    Google Scholar 

  • Ekhart, E., 1949: Zum Innsbrucker Föhn.Meteorol. Rdsch.,2, 276–280.

    Google Scholar 

  • Frey, K., 1984: Der Jahrhundertföhn vom 8. November 1982.Meteorol. Rdsch.,37, 209–220.

    Google Scholar 

  • Frey-Buness, A., Heimann, D., Sausen, R., 1995: A statisticaldynamical downscaling procedure for global climate simulations.Theor. Appl. Climatol.,50, 117–131.

    Google Scholar 

  • Fuentes, U., Heimann, D., 1996: Verification of statisticaldynamical downscaling in the Alpine region.Climate Res.,7(2), 151–168.

    Google Scholar 

  • Giorgi, F., Brodeur, C. S., Bates, G. T., 1994: Regional climate change scenarios over the United States produced with a nested regional climate model.J. Climate,7, 375–399.

    Google Scholar 

  • Heimann, D., 1986: Estimation of regional surface-layer windfield characteristics using a three-layer mesoscale model.Beitr. Phys. Atmos.,59, 518–537.

    Google Scholar 

  • Heimann, D., 1990: Three-dimensional modeling of cold fronts approaching the Alps including latent heat effects.Meteorol. Atmos. Phys.,42, 197–219.

    Google Scholar 

  • Heimann D., 1992a: Three-dimensional modeling of synthetic cold fronts interacting with northern Alpine foehn.Meteorol. Atmos. Phys.,48, 139–163.

    Google Scholar 

  • Heimann, D., 1992b: Numerical simulation of mesoscale structures in the northern Alpine foreland during front passages: A dry cold front with pre-frontal foehn.Meteor. Zs.,N.F.1, 272–284.

    Google Scholar 

  • Heimann, D., 1994: REWIH3D-1.0: Physical and technical model description. DLR Institut für Physik der Atmosphäre, Report No. 3, ISSN 0943-4771.

  • Hoinka, K. P., 1980: Synoptic-scale atmospheric features and foehn.Beitr. Phys. Atmos.,53, 486–508.

    Google Scholar 

  • Hoinka, K. P., 1985: Observations of the airflow over the Alps during a foehn event.Quart. J. Roy. Meteor. Soc.,111, 199–224.

    Google Scholar 

  • Hoinka, K. P., Clark, T. L., 1991: Pressure drag and momentum fluxes due to the Alps. I: Comparison between numerical simulations and observations.Quart. J. Roy. Meteorol. Soc.,117, 495–525.

    Google Scholar 

  • Hoinka, K. P., Rösler, F., 1987: The surface layer on the leeside of the Alps during foehn.Meteorol. Atmos. Phys.,37, 245–258.

    Google Scholar 

  • Hoinka, K. P., Volkert, H., 1987: The German Front Experiment 1987.Bull. Amer. Meteor. Soc.,68, 1424–1427.

    Google Scholar 

  • Hoinka, K. P., Hagen, M., Volkert, H., Heimann, D., 1990: On the influence of the Alps on a cold front.Tellus,42A, 140–164.

    Google Scholar 

  • Jones, R. G., Murphy, J. M., Noguer, M., 1995: Simulation of climate change over Europe using a nested regionalclimate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries.Quart. J. Roy. Meteor. Soc.,121, 1413–1449.

    Google Scholar 

  • Kohonen, T., 1984: Self-Organization and Associative Memory. Heidelberg: Springer (Series in Information Sciences, 7).

    Google Scholar 

  • Mahrer, Y., Pielke, R. A., 1977: A numerical study of the airflow over irregular terrain.Beitr. Phys. Atmos.,50, 98–113.

    Google Scholar 

  • Marinucci, M. R., Giorgi, F., Beniston, M., Wild, M., Tschuck P., Ohmura, A., Bernasconi, A., 1995: High resolution simulations of January and July climate over the western Alpine region with a nested regional modeling system.Theor. Appl. Climatol.,51, 119–138.

    Google Scholar 

  • Seibert, P., 1990: South foehn studies since the ALPEX experiment.Meteorol. Atmos. Phys.,43, 91–103.

    Google Scholar 

  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow.Tellus,41A, 270–274.

    Google Scholar 

  • Ungeheuer, H., 1952: Zur Statistik des Föhns im Voralpen gebiet.Berichte des Wetterdienstes in der U S-Zone,38, 117–120.

    Google Scholar 

  • Wippermann, F., Gross, G., 1981: On the construction of orographically influenced wind roses for given distributions of the large-scale wind.Beitr. Phys. Atmos.,54, 492–501.

    Google Scholar 

  • Wippermann, F., 1984: Air flow over and in broad valleys: channeling and counter-current.Beitr. Phys. Atmos.,57, 92–105.

    Google Scholar 

  • Zorita, E., Hughes, J. P., Lettemaier, D. P., von Storch, H., 1995: Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation.J. Climate,8, 1023–1042.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 13 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimann, D. Mesoscale surface-wind characteristics and potential gravity-wave formation during cross-Alpine airflow. Meteorl. Atmos. Phys. 62, 49–70 (1997). https://doi.org/10.1007/BF01037479

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01037479

Keywords

Navigation