Skip to main content
Log in

Kinetics of the peroxodisulphate and hydrogen peroxide oxidations oftrans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetatocobaltate(II) in acidic and basic buffer media

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Kinetics of the oxidation of Co(cydta)2− (H4cydta=trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid) by peroxodisulphate (S2O 2−8 ) and by hydrogen peroxide have been studied in the ranges of pH 3.6–5.8 (acetate buffer) and 6.0–8.0 (phosphate buffer), respectively. For the first oxidant, the reaction was shown to exhibit second-order kinetics, first-order in each of the reactants. No pH dependence on rate was observed. The hydrogen peroxide reaction was also second-order, being first-order in each of the reactants. The rate of reaction showed inverse [H+] dependence. The rate law is given by\({\text{d[Co(cydta)}}^-- {\text{]/dt = 2\{ k}}_{{\text{H}}_{\text{2}} O_2 } {\text{ + k}}_{{\text{H}}O_2 - } {\text{K}}_{\text{a}} {\text{[H}}^{\text{ + }} {\text{]}}^{--1} {\text{\} [Co(cydta)}}^{{\text{2}}--} {\text{][H}}_{\text{2}} {\text{O}}_{\text{2}} {\text{]}}\). At 30 °C (I, 0.5 M), the ratio of\(k_{HO_2 - } /k_{H_2 O_2 } \sim 10^5 \). The corresponding activation parameters obtained from the temperature-dependence of rate are ΔH= (136±9) kJ mol−1, ΔS=(119±10) JK−1 mol−1 (for the peroxodisulphate system) and ΔH=(75±2) kJ mol−1, ΔS =(−78±4) JK−1 mol−1 (for the hydrogen peroxide system).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Banerjee and M. P. Pujari,Z. Anorg. Allgm. Chem., 473, 224 (1981).

    Google Scholar 

  2. P. Banerjee and M. P. Pujari,Transition Met. Chem., 6, 47 (1981).

    Google Scholar 

  3. P. Banerjee and M. P. Pujari,Bull. Chem. Soc. Jpn., 54, 2496 (1981).

    Google Scholar 

  4. P. Banerjee and M. P. Pujari,Indian J. Chem., (in press).

  5. F. P. Dwyer and F. L. Garvan,J. Am. Chem. Soc., 83, 2610 (1961).

    Google Scholar 

  6. B. B. Smith and R. M. Betts,Inorg. Chem., 9, 2585 (1970).

    Google Scholar 

  7. D. H. Huchital and R. J. Hodges,Inorg. Chem., 12, 998 (1973).

    Google Scholar 

  8. S. S. Gupta and Y. K. Gupta,Inorg. Chem., 20, 454 (1981).

    Google Scholar 

  9. K. Ohashi, M. Matsuzawa, E. Hamano and K. Yamamoto,Bull. Chem. Soc. Jpn., 49, 2440 (1976).

    Google Scholar 

  10. J. O. Edwards inPeroxide Reaction Mechanisms, Interscience, New York (1961).

    Google Scholar 

  11. J. L. Sudmeier and G. Occupati,Inorg. Chem., 7, 2524 (1968).

    Google Scholar 

  12. J. L. Sudmeier, A. J. Senzel and G. L. Blackmer,Inorg. Chem., 10, 90 (1971).

    Google Scholar 

  13. P. Banerjee and M. P. Pujari, Unpublished results.

  14. S. Funahashi, K. Haraguchi and M. Tanaka,Inorg. Chem., 16, 1349 (1977).

    Google Scholar 

  15. S. Funahashi, K. Ishihara and M. Tanaka,Inorg. Chem., 20, 51 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujari, M.P., Banerjee, P. Kinetics of the peroxodisulphate and hydrogen peroxide oxidations oftrans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetatocobaltate(II) in acidic and basic buffer media. Transition Met Chem 8, 91–93 (1983). https://doi.org/10.1007/BF01036087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01036087

Keywords

Navigation