Advertisement

Journal of Applied Electrochemistry

, Volume 21, Issue 8, pp 659–666 | Cite as

Reticulated vitreous carbon cathodes for metal ion removal from process streams part I: Mass transport studies

  • D. Pletcher
  • I. Whyte
  • F. C. Walsh
  • J. P. Millington
Papers

Abstract

The cathodic deposition of copper from acid sulphate solution containing copper(II) has been used to characterize the mass transport properties of reticulated vitreous carbon cathodes, operated in the flow-by mode. Current-potential curves recorded at a rotating vitreous carbon disc electrode were used to determine the diffusion coefficient for copper(II) under the conditions of the experiments and also to elucidate the effect of oxygen in the electrolyte stream. Pressure drop measurements have been used to separate the mass transport coefficient and real surface area effect for four grades of reticulated vitreous carbon, nominally having 10, 30, 60, 100 pores per inch.

Keywords

Mass Transport Acid Sulphate Solution Sulphate Solution Cathodic Deposition Vitreous Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. L. Lopez-Cacicedo,J. Separ. Proc. Technol. 2, (1981), 34.Google Scholar
  2. [2]
    Marketed by BEWT (Water Engineers) Ltd, Tything Road, Arden Forest Industrial Estate, Alcester, Warwickshire, England.Google Scholar
  3. [3]
    G. Kreysa and C. Reynvaan,J. Appl. Electrochem. 12, (1982) 241.Google Scholar
  4. [4]
    Marketed by Deutsche Carbone Akt., Post 560 209, Talstrasse 112, 6000 Frankfurt/Main, West Germany.Google Scholar
  5. [5]
    M. G. Konicek and G. Platek,New Materials and New Processes 2 (1983) 232.Google Scholar
  6. [6]
    Marketed by EES Corporation, 12850 Bournewood Drive, Sugar Land, TX 77478, USA.Google Scholar
  7. [7]
    D. Simonsson,J. Appl. Electrochem. 14 (1984) 595.Google Scholar
  8. [8]
    Marketed by ElectroCell AB, Tumstockvagen 10, S-18366 Taby, Sweden.Google Scholar
  9. [9]
    D. Pletcher and F. C. Walsh, ‘Industrial Electrochemistry,’ Chapman and Hall, London (1990).Google Scholar
  10. [10]
    ‘Electrochemical Reactors-Their Science and Technology, Part A’ (edited by M. I. Ismail) Elsevier Amsterdam (1989).Google Scholar
  11. [11]
    R. J. Marshall and F. C. Walsh,Surface Technol.24 (1985) 45.Google Scholar
  12. [12]
    B. Fleet,Coll. Czech. Chem. Comm. 53, (1988) 1107.Google Scholar
  13. [13]
    J. L. Weininger,AIChE Symp. Series, No 229,79 (1983) 179.Google Scholar
  14. [14]
    G. Kreysa,Metalloberflache 35, (1981) 6.Google Scholar
  15. [15]
    J. S. Newman and W. Tiedeman,Adv. Electrochem. and Electrochem Engng 11 (1978) 353.Google Scholar
  16. [16]
    R. E. Sioda and K. B. Keating,Electroanal. Chem. 12 (1982) 1.Google Scholar
  17. [17]
    D. Pletcher, F. C. Walsh and I. Whyte,I. Chem. E. Symp. Series 116 (1990) 195.Google Scholar
  18. [18]
    J. Wang,Electrochim. Acta 26, (1981) 1721.Google Scholar
  19. [19]
    A. N. Strohl and D. J. Curran,Anal. Chem. 51, (1979) 353.Google Scholar
  20. [20]
    W. J. Blaedel and J. Wang,51 (1979) 799.Google Scholar
  21. [21]
    A. N. Strohl and D. J. Curran,51 (1979) 1050.Google Scholar
  22. [22]
    W. J. Blaedel and J. Wang,52 (1980) 76.Google Scholar
  23. [23]
    ,52 (1980) 1697.Google Scholar
  24. [24]
    J. Wang and H. D. Dewald,J. Electrochem. Soc. 130 (1983) 1814.Google Scholar
  25. [25]
    I. C. Agarwal, A. M. Rochon, H. D. Gesser and A. B. Sparling,Water Res.18 (1984) 227.Google Scholar
  26. [26]
    M. Matlosz and J. S. Newman,J. Electrochem. Soc. 133 (1986) 1850.Google Scholar
  27. [27]
    A. Tentorio and U. Casolo-Ginelli,J. Appl. Electrochem. 8 (1978) 195.Google Scholar
  28. [28]
    D. Cox, Ph.D. Thesis, University of Southampton, England (1982).Google Scholar
  29. [29]
    J. M. Marracino, F. Coeuret and S. Langlois,Electrochim. Acta 32 (1987) 1303.Google Scholar
  30. [30]
    S. Langlois and F. Coeuret,J. Appl. Electrochem. 19 (1989) 43.Google Scholar
  31. [31]
    19 (1989) 51.Google Scholar
  32. [32]
    S. Langlois, J. O. Nanzer and F. Coeuret,19 (1989) 736.Google Scholar
  33. [33]
    F. C. Walsh and I. Whyte, unpublished work.Google Scholar
  34. [34]
    I. F. MacDonald, M. S. El Sayed, K. Mow and F. A. Dullien,Inq. Eng. Chem. Fund. 18 (1979) 199.Google Scholar
  35. [35]
    C. W. Crawford and O. A. Plumb,J. Fluids Eng. 108 (1986) 343.Google Scholar
  36. [36]
    ‘The Handbook of Physics and Chemistry’, The Chemical Rubber Company.Google Scholar
  37. [37]
    R. Greef, R. M. Peat, L. M. Peter, D. Pletcher and J. Robinson, ‘Instrumental Methods in Electrochemistry,’ Ellis Horwood, Chichester (1985).Google Scholar
  38. [38]
    A. J. Arvia, J. C. Bazan and J. S. W. carrozza,Electrochim. Acta 11 (1966) 881.Google Scholar
  39. [39]
    A. R. Gordon and A. Cole,J. Phys. Chem. 40 (1936) 733.Google Scholar
  40. [40]
    D. Pletcher, F. C. Walsh and I. Whyte,J. Cleaner Technol., in preparation.Google Scholar
  41. [41]
    F. Lapique, J. M. Hornut, A. Louchkoff and A. Storck,J. Appl. Electrochem. 19 (1989) 195.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • D. Pletcher
    • 1
  • I. Whyte
    • 1
  • F. C. Walsh
    • 2
  • J. P. Millington
    • 3
  1. 1.Department of ChemistryThe UniversitySouthamptonUK
  2. 2.Chemistry DepartmentPortsmouth PolytechnicPortsmouthUK
  3. 3.Electricity Research and Development CentreChesterUK

Personalised recommendations