Skip to main content
Log in

Craze growth and craze interactions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A dislocation array method of two-dimensional stress analysis has been used to interpret commonly-observed features of craze growth in glassy polymers. It is deduced from the lack of deviation of craze pairs that the tensile stress across an air craze is more than 90% of the applied stress. Craze interactions occur at an early stage of growth when their penetration normal to the free surface exceeds 20% of their separation in the direction of the applied stress. It is suggested that the growth kinetics of crazes are controlled by the potential energy changes in the surrounding elastic material, which in turn are affected by the geometric interactions of crazes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Kambour,J. Polymer. Sci. Macromol. Rev. 7 (1973) 1.

    Google Scholar 

  2. S. Rabinowitz andP. Beardmore, “CRC Critical Reviews in Macromolecular Science”, Vol. 1 (CRC Press, Cleveland, Ohio, 1972).

    Google Scholar 

  3. E. J. Kramer, in “Developments in Polymer Fracture” edited by E. H. Andrews (Applied Science Publishers, London, 1979).

    Google Scholar 

  4. D. S. Dugdale,J. Mech. Phys. Sol. 8 (1960) 100.

    Google Scholar 

  5. G. P. Marshall, L. E. Culver andJ. G. Williams,Proc. Roy. Soc. A319 (1970) 165.

    Google Scholar 

  6. H. R. Brown andI. M. Ward,Polymer 14 (1973) 469.

    Google Scholar 

  7. N. J. Mills andN. Walker,ibid. 17 (1976) 335.

    Google Scholar 

  8. R. A. W. Frazer andI. M. Ward,ibid. 19 (1978) 220.

    Google Scholar 

  9. A. C. Knight,J. Polymer. Sci. A3 (1965) 1845.

    Google Scholar 

  10. E. J. Kramer, H. G. Krenz andD. G. Ast,J. Mater. Sci. 13 (1978) 1093.

    Google Scholar 

  11. B. D. Lauterwasser andE. J. Kramer,Phil. Mag. A 39 (1979) 469.

    Google Scholar 

  12. N. Verheulpen-Heymans andJ. C. Bauwens,J. Mater. Sci. 11 (1976) 1.

    Google Scholar 

  13. A. S. Argon andM. M. Salama,Phil. Mag. 36 (1977) 1217.

    Google Scholar 

  14. J. Opfermann andG. Menges, Fourth International Conference on Fracture, University of Waterloo, 1977 (Pergamon, New York, 1978) p. 1095.

    Google Scholar 

  15. N. J. Mills,J. Mater. Sci. 16 (1981) 1317.

    Google Scholar 

  16. F. M. Burdekin andD. E. W. Stone,J. Strain Analysis 1 (1966) 145.

    Google Scholar 

  17. A. S. Argon andJ. G. Hannoosh,Phil. Mag. 36 (1977) 1195.

    Google Scholar 

  18. N. Verheulpen-Heymans,Polymer 20 (1979) 356.

    Google Scholar 

  19. A. S. Argon,Phil. Mag. 28 (1973) 839.

    Google Scholar 

  20. E. J. Kramer, private communication.

  21. J. Harris, private communication.

  22. M. P. Stallybrass,Int. J. Eng. Sci. 8 (1970) 351

    Google Scholar 

  23. N. Brown, B. D. Metzger andY. Imai,J. Polymer. Sci. Phys. Edn. 16 (1978) 1085.

    Google Scholar 

  24. Y. Sato,Kobunshi Kagaka 23 (1966) 69.

    Google Scholar 

  25. P. Farahani, unpublished work (1979).

  26. V. Huntingdon, unpublished work (1977).

  27. N. J. Mills andN. Walker,J. Mater. Sci. 15 (1980) 1832.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, N.J. Craze growth and craze interactions. J Mater Sci 16, 1332–1342 (1981). https://doi.org/10.1007/BF01033849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033849

Keywords

Navigation