Skip to main content
Log in

The structure and mechanical properties of an injection-moulded acetal copolymer

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Processing conditions, microstructure and mechanical property correlations have been explored in injection-moulded plaques of an acetal copolymer. Barrel temperature was varied systematically between 453 and 503 K, with a constant mould temperature of 343 K. The microstructure and texture were determined by polarized light microscopy and X-ray pole-figure analysis, respectively. The overall structure of the mouldings was layered through the thickness and symetrical about the moulding centre line. At all barrel temperatures five layers were present: the outer three layers possessed significant preferred chain-axis orientation in the crystalline phase, while the two layers at the centre of the moulding were equiaxed. The texture and morphology of each layer is described and related to a model of mould filling. Increases in the barrel temperature reduced the extent of the outer oriented layers while increasing the extent of the equiaxed layers. Tensile tests were conducted on samples taken at 0° and 90° to the injection direction. Increases in barrel temperature had no influence on modulus but decreased both (α=0 and 90°) engineering yield stresses. The yield stress could be correlated with the extent of the oriented layers within mouldings. At all barrel temperatures the yield stress was greater when α=90°; this behaviour is explained in terms of a composite model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Mencik andA. J. Chompff,J. Polymer Sci. Phys. 12 (1974) 977.

    Google Scholar 

  2. J. E. Callear andJ. B. Shorthall,J. Mater. Sci. 12 (1977) 141.

    Google Scholar 

  3. S. Y. Hobbs andC. F. Pratt,J. Appl. Polymer Sci. 19 (1975) 1701.

    Google Scholar 

  4. D. P. Russel, PhD. Thesis, Cambridge University, 1977.

  5. M. Fleissner andE. Paschke,Kunststoffe 61 (1971) 195.

    Google Scholar 

  6. W. Heckmann andG. Spilgies,Kolloid Z.u.Z. Polymere 250 (1972) 1150.

    Google Scholar 

  7. G. Wübken, PhD. Dissertation, Technical High School, Aachen, May 1974.

    Google Scholar 

  8. M. R. Kantz, H. D. Newman andF. H. Stigle,J. Appl. Polymer Sci. 16 (1972) 1249.

    Google Scholar 

  9. S. J. Henke, C. E. Smith andR. F. Abbot,Polymer Eng. Sci. 15 (1975) 79.

    Google Scholar 

  10. D. R. Fitchmun andZ. Mencik,J. Polymer Sci. Phys. 11 (1973) 951 and 973.

    Google Scholar 

  11. E. S. Clark,SPE J. 23(7) (1967) 46.

    Google Scholar 

  12. Idem, Appl. Polymer Symp. 20 (1973) 325.

    Google Scholar 

  13. T. W. Owen andD. Hull Plastics and Polymers 41 (February 1974) 19.

    Google Scholar 

  14. J. Bowman, N. Harris andM. Bevis,J. Mater. Sci. 10 (1975) 63.

    Google Scholar 

  15. J. Bowman andM. Bevis,Plastics and Rubber: Materials and Applications 1 (1976) 177.

    Google Scholar 

  16. J. Bowman andM. Bevis, unpublished work.

  17. E. O. Allen andG. W. Van Putte,Plastics Eng. 30 (July 1974) 37.

    Google Scholar 

  18. D. E. Scherpereel,Plastics Eng. (December 1976) 46.

  19. E. Clark,Plastics Eng. (March 1974) 74.

  20. E. Bohme,Kunststoffe 60 (1970) 273.

    Google Scholar 

  21. E. P. Chang, R. W. Gray andN. G. McCrum,J. Mater. Sci. 8 (1973) 397.

    Google Scholar 

  22. J. E. Preedy andE. J. Wheeler,Nature 236 (1972) 60.

    Google Scholar 

  23. E. H. Andrews andG. E. Martin,J. Mater. Sci. 8 (1973) 1315.

    Google Scholar 

  24. M. Droscher, G. Lieser, H. Reimann andG. Wegner,Polymer 16 (1975) 497.

    Google Scholar 

  25. G. A. Carazzolo andM. J. Mammi,J. Polymer Sci. (A) 1 (1963) 965.

    Google Scholar 

  26. N. Harris andM. Bevis,J. Mater Sci. 10 (1975) 539.

    Google Scholar 

  27. K. O'Leary andP. H. Geil,J. Macromolec. Sci. Phys. 132 (1968) 261.

    Google Scholar 

  28. M. J. Miles andN. J. Mills,J. Mater. Sci. 10 (1975) 2092.

    Google Scholar 

  29. W. Heckmann andU. Johnson,Colloid Polymer Sci. 252 (1974) 826.

    Google Scholar 

  30. B. D. Cullity, “Elements of X-ray Diffraction”, (Addison-Wesley, New York, 1956).

    Google Scholar 

  31. L. G. Schultz,J. Appl. Phys. 20 (1949) 1030.

    Google Scholar 

  32. D. Lewis, E. J. Wheeler, W. F. Maddons andJ. E. Preedy,J. Appl. Crystallog. 4 (1971) 55.

    Google Scholar 

  33. G. L. Wilkes,Adv. Polymer Sci. 8 (1971) 91.

    Google Scholar 

  34. C. R. Desper andR. S. Stein,J. Appl. Phys. 37 (1966) 3990.

    Google Scholar 

  35. R. L. Ballman andH. L. Toor,Modern Plastics 38 (October 1960) 113.

    Google Scholar 

  36. Z. Tadmor,J. Appl. Polymer Sci. 18 (1974) 1753.

    Google Scholar 

  37. J. L. Berger andC. G. Gogos,Polymer Eng. Sci. 13 (1973) 102.

    Google Scholar 

  38. P-C. Wu, C. F. Huang andG. G. Gogos,ibid 14 (1974) 223.

    Google Scholar 

  39. H. A. Lord andG. Williams,ibid 15 (1975) 553.

    Google Scholar 

  40. P. Thienel andG. Menges,ibid 18 (1978) 314.

    Google Scholar 

  41. J. L. White andH. B. Dee,ibid 14 (1974) 212.

    Google Scholar 

  42. J. L. White, Ibid15 (1975) 44.

    Google Scholar 

  43. L. R. Schmidt,ibid 14 (1974) 797.

    Google Scholar 

  44. R. S. Spencer andG. D. Gilmore,J. Colloid Sci. 6 (1951) 118.

    Google Scholar 

  45. J. L. S. Wales, J. Van Leeuwen andJ. Van Der Vijgh,Polymer Eng. Sci. 12 (1972) 358.

    Google Scholar 

  46. G. Menges, G. Wubken andB. Horn,Colloid Polymer Sci. 254 (1976) 267.

    Google Scholar 

  47. C. A. Garber andE. S. Clark,J. Macromolec. Sci. Phys. B4 (1970) 499.

    Google Scholar 

  48. E. H. Andrews,Proc. Roy. Soc. A277 (1964) 562.

    Google Scholar 

  49. T. W. Haas andB. Maxwell,Polymer Eng. Sci. 9 (1969) 225.

    Google Scholar 

  50. R. K. Eby,J. Appl. Phys. 35 (1964) 2720.

    Google Scholar 

  51. D. R. Fitchmun andS. Newman,J. Polymer Sci. A28 (1970) 1545.

    Google Scholar 

  52. A. M. Chatterjee, F. P. Price andS. Newman,J. Polymer Sci. Phys. 13 (1975) 2369.

    Google Scholar 

  53. Idem, ibid (1975) 2385.

    Google Scholar 

  54. Idem, ibid (1975) 2391.

    Google Scholar 

  55. C. F. Hammer, T. A. Koch andJ. F. Whitney,J. Appl. Polymer Sci. 1 (1959) 169.

    Google Scholar 

  56. D. W. Krevelen, “Properties of Polymers”, (Elsevier, Amsterdam, 1972).

    Google Scholar 

  57. M. Kapuscinski, I. M. Ward andJ. Scanlan,J. Macromolec. Sci. Phys. B11 (1975) 475.

    Google Scholar 

  58. M. Takayanagi, K. Imada andT. Kajiyama,J. Polymer Sci. Part C15 (1966) 263.

    Google Scholar 

  59. E. Paschke,Kunststoffe 60 (1970) 187.

    Google Scholar 

  60. E. H. Andrews,Pure Appl. Chem. 39 (1974) 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, J. The structure and mechanical properties of an injection-moulded acetal copolymer. J Mater Sci 16, 1151–1166 (1981). https://doi.org/10.1007/BF01033825

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033825

Keywords

Navigation