Skip to main content
Log in

The solubility and isotopic fractionation of gases in dilute aqueous solution. I. Oxygen

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A very precise and accurate new method is described for determination of the Henry coefficient k and the isotopic fractionation of gases dissolved in liquids. It yields fully corrected values for k at essentially infinite dilution. For oxygen the random error for k is less than 0.02%, which is an order of magnitude better than the best previous measurements on that or any other gas. Extensive tests and comparison with other work indicate that systematic errors probably are negligible and that the accuracy is determined by the precision of the measurements. In the virial correction factor (1+λPt), where Pt is the total pressure of the vapor phase, the coefficient λ for oxygen empirically is a linear decreasing function of the temperature over the range 0–60°C. The simple three-term power series in 1/T proposed by Benson and Krause,

$$\ln k = a_0 + a_1 /T + a_2 /T^2 $$

provides a much better form for the variation of k with temperature than any previous expression. With a0=3.71814, a1=5596.17, and a2=−1049668, the precision of fit to it of 37 data points for oxygen from 0–60°C is 0.018% (one standard deviation). The three-term series in 1/T also yields the best fit for the most accurate data on equilibrium constants for other types of systems, which suggests that the function may have broader applications. The oxygen results support the idea that when the function is rewritten as

$$\ln k = - (A_1 + A_2 ) + A_1 \left( {\frac{{T_1 }}{T}} \right) + A_2 \left( {\frac{{T_1 }}{T}} \right)^2 $$

it becomes a universal solubility equation in the sense that A2 is common to all gases, with T1 and A1 characteristic of the specific gas. Accurate values are presented for the partial molal thermodynamic function changes for the solution of oxygen in water between the usual standard states for the liquid and vapor phases. These include the change in heat capacity, which varies inversely with the square of the absolute temperature and for which the random error is 0.15%. Analysis of the high-temperature data of Stephan et al., in combination with our values from 0–60°C, shows that for oxygen the fourterm series in 1/T,

$$\ln k = - 4.1741 + 1.3104 \times 10^4 /T - 3.4170 \times 10^6 /T^2 + 2.4749 \times 10^8 /T^3 $$

where p=kx and p is the partial pressure in atmospheres of the gas, probably provides the best and easiest way presently available to calculate values for k in the range 100–288°C, but more precise measurements at elevated temperatures are needed. The new method permits direct mass spectrometric comparison of the isotopic ratio34O2/32O2 in the dissolved gas to that in the gas above the solution. The fractionation factor α=32k/34k varies from approximately 1.00085 (±0.00002) at 0°C to 1.00055 (±0.00002) at 60°C. Although the results provide the first quantitative determination of α vs. temperature for oxygen, it is not possible from these data to choose among several functions for the variation ofInα with temperature. If the isotopic fractionation is assumed to be due to a difference in the zero-point energy of the two species of oxygen molecules, the size of the solvent cage is calculated to be approximately 2.5 Å. The isotopic measurements indicate that substitution of a34O2 molecule for a32O2 molecule in solution involves a change in enthalpy with a relatively small change in entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Markham and K. A. Kobe,Chem. Rev. 28, 519 (1941).

    Google Scholar 

  2. R. Battino and H. L. Clever,Chem. Rev. 66, 395 (1966).

    Google Scholar 

  3. E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev. 77 219 (1977).

    Google Scholar 

  4. Water, A Comprehensive Treatise, Four Volumes, F. Franks, ed. (Plenum Press, New York, 1972).

    Google Scholar 

  5. L. W. Winkler,Ber. Dtsch. Chem. Ges. 22, 1764 (1889).

    Google Scholar 

  6. L. W. Winkler,Ber. Dtsch. Chem. Ges. 24, 3602 (1891).

    Google Scholar 

  7. C. J. J. Fox,Trans. Faraday Soc. 5, 68 (1909).

    Google Scholar 

  8. Handbook of Chemistry and Physics, 39th edn. (Chemical Rubber Publishing Co., Cleveland, Ohio, 1957).

  9. G. B. Whipple and M. C. Whipple,J. Am. Chem. Soc. 33, 362 (1911).

    Google Scholar 

  10. G. A. Truesdale, A. L. Downing, and G. F. Lowden,J. Appl. Chem. 5, 53 (1955).

    Google Scholar 

  11. T. J. Morrison and F. Billett,J. Chem. Soc., 3819 (1952).

  12. H. Steen,Limnol. Oceanogr. 3, 423 (1958).

    Google Scholar 

  13. J. C. Morris, W. Stumm, and H. A. Galal,Proc. Am. Soc. Civ. Eng., J. Sanit. Eng. Div. 87, SA1, 81 (1961).

    Google Scholar 

  14. H. L. Elmore and T. W. Hayes,Proc. Am. Soc. Civ. Eng., J. Sanit. Eng. Div. 86, SA4, 41 (1960).

    Google Scholar 

  15. B. B. Benson and P. D. M. Parker,J. Phys. Chem. 65, 1480 (1961).

    Google Scholar 

  16. C. E. Klots and B. B. Benson,J. Mar. Res. 21, 48 (1963).

    Google Scholar 

  17. H. A. C. Montgomery, N. S. Thom, and A. Cockburn,J. Appl. Chem. 14, 280 (1964).

    Google Scholar 

  18. E. Douglas,J. Phys. Chem. 68, 169 (1964).

    Google Scholar 

  19. K. Grasshoff,Kiel. Meersforsch. 20, 143 (1964).

    Google Scholar 

  20. J. H. Carpenter,Limnol. Oceanogr. 11, 264 (1966).

    Google Scholar 

  21. E. J. Green and D. E. Carritt,J. Mar. Res. 25, 140 (1967).

    Google Scholar 

  22. C. N. Murray and J. P. Riley,Deep-Sea Res. 16, 311 (1969).

    Google Scholar 

  23. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  24. S. Valentiner,Z. Phys. 42, 253 (1927).

    Google Scholar 

  25. R. F. Weiss,Deep-Sea Res. 17, 721 (1970).

    Google Scholar 

  26. C. N. Murray, J. P. Riley, and T. R. S. Wilson,Deep-Sea Res. 16, 297 (1969).

    Google Scholar 

  27. C. N. Murray and J. P. Riley,Deep-Sea Res. 17, 203 (1970).

    Google Scholar 

  28. B. B. Benson and D. Krause, Jr.,J. Chem. Phys. 64, 689 (1976).

    Google Scholar 

  29. D. M. Himmelblau,J. Phys. Chem. 63, 1803 (1959);J. Chem. Eng. Data 5, 10 (1960).

    Google Scholar 

  30. C. E. Klots and B. B. Benson,J. Chem. Phys. 38, 890 (1963).

    Google Scholar 

  31. J. Polgar, Unpublished B.A. Thesis, Amherst College (1965).

  32. R. F. Weiss,Science 168, 247 (1969).

    Google Scholar 

  33. P. Kroopnick and H. Craig,Science 175, 54 (1972).

    Google Scholar 

  34. J. Muccitelli and W.-Y. Wen,J. Solution Chem. 7, 257 (1978).

    Google Scholar 

  35. T. E. Crozier and S. Yamamoto,J. Chem. Eng. Data 19, 242 (1974).

    Google Scholar 

  36. P. H. Bigg,Br. J. Appl. Phys. 15, 1111 (1964).

    Google Scholar 

  37. J. M. H. L. Sengers, M. Klein, and J. S. Gallagher, inAmerican Institute of Physics Handbook, 3rd edn., D. E. Gray, coordinating editor; M. W. Zemansky, Section 4 editor (McGraw-Hill Book Co., New York, 1972).

    Google Scholar 

  38. D. L. Hammond, C. A. Adams, and P. Schmidt,Trans. Instrum. Soc. Am. 4, 349 (1965).

    Google Scholar 

  39. B. B. Benson and D. Krause, Jr.,Rev. Sci. Instrum. 45, 1499 (1974).

    Google Scholar 

  40. A. O. Nier,Rev. Sci. Instrum. 18, 398 (1947).

    Google Scholar 

  41. C. R. McKinney, J. M. McCrea, S. Epstein, H. A. Allen, and H. C. Urey,Rev. Sci. Instrum. 21, 724 (1950).

    Google Scholar 

  42. K. B. Wiberg,Computer Programming for Chemists, (Benjamin, New York, 1965).2

    Google Scholar 

  43. F. S. Feates and D. J. G. Ives,J. Chem. Soc., 2798 (1954).

  44. D. J. G. Ives and P. D. Marsden,J. Chem. Soc., 649 (1965).

  45. R. A. Pierotti,J. Phys. Chem. 69, 281 (1965).

    Google Scholar 

  46. E. F. Stephan, N. S. Hatfield, R. S. Peoples, and H. A. H. Pray, USAEC BMI-1067 (1956).

  47. J. Bigeleisen,J. Chem. Phys. 34, 1485 (1961).

    Google Scholar 

  48. R. D. Bardo and M. Wolfsberg,J. Phys. Chem. 80, 1068 (1976).

    Google Scholar 

  49. J. H. Rolston, J. den Hartog, and J. P. Butler,J. Phys. Chem. 80, 1064 (1976).

    Google Scholar 

  50. W. A. Van Hook and J. T. Phillips,J. Phys. Chem. 70, 1515 (1966).

    Google Scholar 

  51. E. J. Green, Ph.D. Thesis, Massachusetts Institute of Technology (1965).

  52. J. P. Jacobsen,Middelelser fra Kommisionen for Havundersogelser, Serie Hydrografi, Bind 1, No. 8, Copenhagen.

  53. W. E. Adeney and H. G. Becker,Philos. Mag. 38, 317 (1919).

    Google Scholar 

  54. T. Carlson,J. Chim. Phys. 9, 228 (1911).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, B.B., Krause, D. & Peterson, M.A. The solubility and isotopic fractionation of gases in dilute aqueous solution. I. Oxygen. J Solution Chem 8, 655–690 (1979). https://doi.org/10.1007/BF01033696

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033696

Key words

Navigation