Skip to main content

Minkowski operations and vector spaces


Mathematical morphology started as a set of tools for analysing images by the use of transformations based on set-theoretical operations which are the Minkowski sum and subtraction. It was first developed for the analysis of binary images. Its extension to grey-level images was a later development with the extension of the Minkowski operations to real-valued functions in terms of sup-convolution and inf-convolution. The purpose of this paper is to define a type of convolution between set-valued maps, to study its properties, and to establish some associated differential relations. This set-convolution map allows us to extend the Minkowski sum and substraction to multivalued functions and to functions with vectorial values.

This is a preview of subscription content, access via your institution.


  1. Aubin, J.-P.:Morphological and Mutational Analysis, Tools for Shape Regulation and Optimization, Commett Matari Programme, CEREMADE, University of Paris-Dauphine, France, 1993.

    Google Scholar 

  2. Aubin, J.-P. and Cellina, A.:Differential Inclusions (Set-Valued Maps and Viability Theory), Springer, Berlin, 1984.

    Google Scholar 

  3. Aubin, J.-P. and Frankowska, H.:Set-Valued Analysis, Systems and Control: Foundations and Applications, Birkhäuser, Basle, 1990.

    Google Scholar 

  4. Beucher, S. Watersheds of functions and picture segmentations, in:Proc. IEEE Internat. Conf. on Acoustics, Speech and Signal Processing, Paris, May 1982, 1928–1931.

  5. Heijmans, H.J.A.M.: Theoretical aspects of gray-level morphology,IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (1991), 568–582.

    Google Scholar 

  6. Matheron, G.:Random Sets and Integral Geometry, Wiley, New York, 1975.

    Google Scholar 

  7. Matheron, G.: Filters and lattices. Technical Report 851, CGMM, École des Mines, Sep. 1983.

  8. Matheron, G.: Filters and lattices, in: J. Serra (ed.),Image Analysis and Mathematical Morphology, Vol. 2, Theoretical Advances, Academic Press, London, 1988.

    Google Scholar 

  9. Matheron, G.: Les treillis compacts. Technical Report N-23/90/G, Centre de Géostatistique, École des Mines de Paris, Nov. 1990.

  10. Mattioli, J.: Differential Relations of Morphological Operators, in:Mathematical Morphology and Its Applications to Signal Processing, Barcelona, Spain, 12–14, May 1993, pp. 162–167.

  11. Mattioli, J.: Relations différentielles d'opérations de la morphologie mathématique,C.R. Acad. Sci. Paris 316 (1993), 879–884.

    Google Scholar 

  12. Meyer, F.: Contrast feature extraction, in: J.-L. Chermant (ed.),Quantitative Analysis of Microstructures in Material Sciences, Biology and Medicine, Stuttgart, FRG, 1978, Riederer-Verlag, Special issue ofPractical Metallography.

  13. Moreau, J.-J.: Fonctionnelles convexes,Séminaire du Collège de France, 1966.

  14. Rockafellar, R.T.:Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

    Google Scholar 

  15. Serra, J.:Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

    Google Scholar 

  16. Serra, J.: Eléments de théorie pour l'optique morphologique, Thèse d'Etat, Université de Paris VI, 1986.

  17. Serra, J.: ed.,Image Analysis and Mathematical Morphology, Vol. 2, Theoretical Advances, Academic Press, London, 1988.

    Google Scholar 

  18. Sternberg, S.R.: Grayscale Morphology,Computer Vision, Graphics and Image Processing 35 (1986), 333–355.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mattioli, J. Minkowski operations and vector spaces. Set-Valued Anal 3, 33–50 (1995).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI:

Mathematics Subject Classifications (1991)

  • 47H04
  • 68U10

Key words

  • mathematical morphology
  • Minkowski sum
  • Minkowski subtraction
  • set-convolution
  • internal set-convolution
  • Steiner selection