Advertisement

The Histochemical Journal

, Volume 14, Issue 5, pp 767–780 | Cite as

Localization of amylase and mucins in the major salivary glands of the mouse

  • A. P. Vreugdenhil
  • A. V. Nieuw Amerongen
  • G. L. De Lange
  • P. A. Roukema
Papers

Summary

Antibodies against murine submandibular and sublingual mucins have been raised in rabbits. Both antisera appeared to be specific. Using these antibodies, the mucins were localized in the acinar cells of the submandibular and sublingual glands respectively.

The dyed amylopectin method was used to estimate the activity of amylase in the salivary glands. The enzyme was localized either by a starch-substrate film method or with antibodies against purified parotid amylase. The activity of amylase in parotid homogenates is about 1000-fold higher than that in homogenates of either submandibular or sublingual glands, in which the activity was comparable. Amylase was localized in the acinar cells of the parotid gland with both localization techniques. In the sublingual gland, amylase was found predominantly in the stroma around the acini, and there was some evidence that amylase was present in the demilune cells as well. In the submandibular gland, contradictory results were obtained with both techniques. With the starch-substrate film method, amylase activity was found in the granular convoluted tubular cells, whereas immuno-reactive amylase could only be demonstrated in the acinar cells of this gland. It is concluded that in the submandibular gland amylase and mucin are present in the same cell type.

Keywords

Salivary Gland Amylase Acinar Cell Contradictory Result Parotid Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyden, S. V. (1951) The absorption of proteins on erythrocytes treated with tannic acid and subsequent haemagglutination by antiprotein sera.J. exp. Med. 93, 107–20.Google Scholar
  2. Coons, A. H., Creech, H. J. &Jones, R. N. (1941) Immunological properties of an antibody containing a fluorescent group.Proc. Soc. exp. Biol. Med. 47, 200–2.Google Scholar
  3. De Lange, G. L. (1975) The effect of salivary gland extracts on the histology of lymphoid organs and salivary glands in mice.Archs Oral Biol. 20, 515–20.Google Scholar
  4. Fava-De-Moraes, F. &Nicolau, J. (1965) Quantitative studies of sialic acids in salivary glands of laboratory animals. I. Correlation with histochemistry.Rev. Brasil. Biol. 25, 395–400.Google Scholar
  5. Feltkamp, T. E. W. &Van Rossum, A. L. (1968) Antibodies to salivary duct cells and other autoantibodies, in patients with Sjögren's syndrome and other idiopathic autoimmune-diseases.Clin. Exp. Immun. 3, 1–16.Google Scholar
  6. Garrett, J. R. &Thulin, A. (1975) Changes in parotid acinar cells accompanying salivary secretion in rats on sympathetic or parasympathetic nerve stimulation.Cell Tiss. Res. 159, 179–93.Google Scholar
  7. Kraus, F. W. &Mestecky, J. (1971) Immunohistochemical localization of amylase, lysozyme and immunoglobulins in the human parotid gland.Archs Oral Biol. 16, 781–9.Google Scholar
  8. Nieuw Amerongen, A. V., Roukema, P. A. &Vreugdenhil, A. P. (1978a) Comparison of adenylate cyclase activity andin vitro secretion in the parotid and sublingual glands of the mouse.J. Physiol., Lond. 283, 211–21.Google Scholar
  9. Nieuw Amerongen, A. V., Aarsman, M. E. G., Vreugdenhil, A. P. &Roukema, P. A. (1978b) Electrophoretic isolation and partial characterization of a major secretory glycoprotein from the submandibular glands of the mouse.Biochim. Biophys. Acta 534, 26–37.Google Scholar
  10. Nieuw Amerongen, A. V., Oderkerk, C. H., Vreugdenhil, A. P. &Roukema, P. A. (1980a) Biochemical and immunochemical studies of α-amylase from the salivary glands of the mouse.Archs Oral Biol. 24, 945–53.Google Scholar
  11. Nieuw Amerongen, A. V., Roukema, P. A. &Vreugdenhil, A. P. (1980b) Cyclic AMP in the sublingual glands of the mouse.J. Physiol., Lond. 303, 83–90.Google Scholar
  12. Nieuw Amerongen, A. V., Oderkerk, C. H., Vreugdenhil, A. P. &Roukema, P. A. (1981a) Characteristics of salivary α-amylase of the mouse.Adv. Physiol. Sci. 28, 195–200.Google Scholar
  13. Nieuw Amerongen, A. V., Oderkerk, C. H., Vreugdenhil, A. P. &Roukema, P. A. (1981b) Cellular origin of secretory granules in murine salivary glands.Cell Biol. Int. Rep. 5, 465–6.Google Scholar
  14. Nieuw Amerongen, A. V., Aarsman, M. E. G., Oderkerk, C. H., Vreugdenhil, A. P. &Roukema, P. A. (1981c) AM2, a submandibular secretory glycoprotein of the mouse. An immunochemical and immunohistochemical study.J. Biol. Buccale 9, 41–52.Google Scholar
  15. Oemrawsingh, I. &Roukema, P. A. (1974) Composition and biological properties of mucins, isolated from human submandibular glands.Archs Oral Biol. 19, 753–9.Google Scholar
  16. Oemrawsingh, I. &Roukema, P. A. (1976) Immunological characterization and detection of human submandibular mucins in saliva, dental plaque and submandibular glands.Archs Oral Biol. 21, 755–9.Google Scholar
  17. Ouchterlony, O. (1958) Diffusion-in-gel methods for immunological analysis. InProgress in Allergy Vol. 5 (edited byKallós, P.), pp. 1–78. Basel, Karger.Google Scholar
  18. Roukema, P. A., Oderkerk, C. H. &Salkinoja-Salonen, M. S. (1976) The murine sublingual and submandibular mucins. Their isolation and characterization.Biochim. Biophys. Acta 428, 432–40.Google Scholar
  19. Sato, S., Maruyama, S. &Chen, J. N. (1977) Quantitative histochemistry of sex differences of periodic acid-Schiff reaction in mouse submandibular gland.Archs Oral Biol. 22, 7–12.Google Scholar
  20. Schramm, M. &Dannon, D. (1961) The mechanism of enzyme secretion by the cell I. Storage of amylase in the zymogen granules of the rat-parotid gland.Biochim. Biophys. Acta 50, 102–12.Google Scholar
  21. Shear, M. (1972) Substrate film techniques for the histochemical demonstration of amylase and protease in salivary glands.J. Dent. Res. 51, 368–80.Google Scholar
  22. Shear, M. &Pearse, A. E. G. (1963) A starch substrate film method for the histochemical localization of amylase.Expl Cell Res. 32, 174–7.Google Scholar
  23. Smith, R. J. &Frommer, J. (1972) On the function of granular tubules in rodent submandibular glands: Histochemical observations onOctodon degas.Archs Oral Biol. 17, 1375–80.Google Scholar
  24. Smith, R. J. &Frommer, J. (1973a) The starch substrate film method for the localization of amylase activity. Suggestions for a standardized procedure.J. Histochem. Cytochem. 21, 189–90.Google Scholar
  25. Smith, R. J. &Frommer, J. (1973b) Amylase localization in hamster submandibular glands.J. Dent. Res. 52, 395.Google Scholar
  26. Smith, R. J. &Frommer, J. (1975a) Localization of amylase in major salivary glands of the guinea pig.J. Dent. Res. 54, 1027–30.Google Scholar
  27. Smith, R. J. &Frommer, J. (1975b) Quantitative morphology and carbohydrate histochemistry of the mouse submandibular gland following prepubertal castration.Am. J. Anat. 144, 137–48.Google Scholar
  28. Smith, R. J., Frommer, J. &Schiff, R. (1971) Localization and onset of amylase activity in mouse salivary glands determined by a substrate film method.J. Histochem. Cytochem. 19, 310–9.Google Scholar
  29. Spicer, S. S. &Warren, L. (1960) The histochemistry of sialic acid containing mucoproteins.J. Histochem. Cytochem. 8, 135–7.Google Scholar
  30. Spicer, S. S. &Duvenci, J. (1964) Histochemical characteristics of mucopolysaccharides in salivary and exorbital lacrimal glands.Anat. Rec. 149, 333–58.Google Scholar
  31. Tilders, F. J. H., Ploem, J. S. &Smelik, P. G. (1974) Quantitative microfluorimetric studies on formaldehyde induced fluorescence of 5-hydroxytryptamine in the pineal gland of the rat.J. Histochem. Cytochem. 22, 967–75.Google Scholar
  32. Voorhorst, C. D. &De Kloet, K. (1972) Amylase assay in serum using dyed amylopectine.Clin. Chim. Acta 39, 391–3.Google Scholar
  33. Vreugdenhil, A. P. &Roukema, P. A. (1975) Comparison of the secretory processes in the parotid and sublingual glands of the mouse I. Regulation of the secretory processes.Biochim. Biophys. Acta 413, 79–94.Google Scholar
  34. Vreugdenhil, A. P., De Lange, G. L., Nieuw Amerongen, A. V. &Roukema, P. A. (1980a) Morphological changes in the salivary glands upon stimulation by receptor-selective agonists I. Parotid glands of the mouse.J. Biol. Buccale 8, 59–71.Google Scholar
  35. Vreugdenhil, A. P., De Lange, G. L., Nieuw Amerongen, A. V. &Roukema, P. A. (1980b) Morphological changes in the salivary glands upon stimulation by receptor-selective agonists II. Submandibular glands of the mouse.J. Biol. Buccale 8, 73–85.Google Scholar
  36. Vreugdenhil, A. P., De Lange, G. L., Nieuw Amerongen, A. V. &Roukema, P. A. (1980c) Morphological changes in the salivary glands upon stimulation by receptor-selective agonists III. Sublingual glands of the mouse.J. Biol. Buccale 8, 87–98.Google Scholar
  37. Vreugdenhil, A. P., De Lange, G. L., Nieuw Amerongen, A. V. &Roukema, P. A. (1981) Regulation of sublingual (glyco)protein secretion in the mouse.Adv. Physiol. Sci. 28, 233–8.Google Scholar
  38. Warren, L. (1959) The thiobarbituric acid assay of sialic acids.J. Biol. Chem. 234, 1971–5.Google Scholar
  39. Williams, G. &Jackson, D. S. (1956) Two organic fixatives for acid mucopolysaccharides.Stain Technol. 31, 189–91.Google Scholar
  40. Yasuda, K. &Coons, A. H. (1966) Localization by immunofluorescence of amylase, trypsinogen and chymotrypsinogen in the acinar cells of the pig pancreas.J. Histochem. Cytochem. 14, 303–13.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • A. P. Vreugdenhil
    • 1
  • A. V. Nieuw Amerongen
    • 1
  • G. L. De Lange
    • 2
  • P. A. Roukema
    • 1
  1. 1.Department of Oral Biochemistry, Faculty of DentistryVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Oral Histology, Faculty of DentistryVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations