Journal of Applied Electrochemistry

, Volume 20, Issue 2, pp 186–195 | Cite as

Potential distribution and electrode stability in a bipolar electrolysis cell

  • J. Divisek
  • R. Jung
  • D. Britz
Article

Abstract

A computational model is presented, which enables the identification of those zones endangered by corrosion in a bipolar electrolysis cell stack. The method consists of two steps: first the potential profile in the electrolyser is computed by numerical solution of the Laplace equation using the finite difference method; then, making use of the Criss-Cobble correspondence principle, this profile is related to the potential-dependent thermodynamic stabilities of the respective metals. This may be a useful tool in the design of intermittently operating electrolysers (for example those powered by solar energy).

Keywords

Physical Chemistry Computational Model Finite Difference Solar Energy Difference Method 

Nomenclature

A

metal phase

Ai

single A-phase point

B

electrolyte phase

Bi

single B-phase point

F

Faraday constant

h

mesh interval (m)

i

local current density (A m−2)

i0

exchange current density (A m−2)

j

local current across the double layer (A)

jiA,jiB

tangential or normal component of the double layer current (A)

K

A, B phase conductivity ratio

m

molality mol kg−1

R

gas constant

T

absolute temperature (K)

U

potential (V)

U0

water decomposition voltage (V)

Utot

end plate potential (V)

x, y

cartesian coordinates

α

overrelaxation factor

ηa, ηc

anodic or cathodic overpotential (V)

κA, κB

electrical conductivity (Ω−1 m−1)

Φ

potential (V)

Φm

local double layer potential, electrode end (V)

Φs

local double layer potential, electrolyte end (V)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Jaksic,Electrochim. Acta 29 (1984) 1539.Google Scholar
  2. [2]
    J. Divisek and J. Balej, to be published in DECHEMA-Monographien 1990.Google Scholar
  3. [3]
    J. Divisek and H. Schmitz, ‘Galvanische Herstellung und elektrochemische Stabilität von aktiven Nickelelektroden’, DECHEMA-Monográphie, 1989, p. 299.Google Scholar
  4. [4]
    L. Lapidus and G. F. Pinder, ‘Numerical Solution of Partial Differential Equations in Science and Engineering’, Wiley, New York (1982) pp. 34–48.Google Scholar
  5. [5]
    D. Britz, ‘Digital Simulation in Electrochemistry’, 1st edn, Springer, Berlin (1980).Google Scholar
  6. [6]
    C. J. H. King and D. E. Danley, ‘Experimental Measurement of Current Leakage in a Commercial Scale Bipolar Cell Stack’, The Electrochemical Society Extended Abstracts, May 1982. (Cited in [7]).Google Scholar
  7. [7]
    J. W. Holmes and R. E. White, in ‘Electrochemical Cell Design’ (Ed. R. E. White), Plenum, New York (1984) p. 311.Google Scholar
  8. [8]
    E. C. Dimpault-Darcy and R. E. White,J. Electrochem. Soc. 135 (1988) 656.Google Scholar
  9. [9]
    I. Rousar, K. Micka and A. Kimla, ‘Electrochemical Engineering’, Elsevier, Amsterdam (1986).Google Scholar
  10. [10]
    J. Divisek, J. Mergel and H. Schmitz, ‘Advanced water electrolysis cell in discontinuous operation mode’, in Hydrogen Energy Progress VII edited by T. N. Veziroglu and A. N. Protsenko, Pergamon, Oxford (1988) p. 327.Google Scholar
  11. [11]
    J. Divisek and L. Fürst, ‘Ermittlung des Potentialprofils in einem bipolaren Elektrolyseur’, DECHEMA-Monographie 1989, p. 245.Google Scholar
  12. [12]
    T. V. Nguyen and R. E. White,Comput. Chem. Engng. 11 (1987) 543.Google Scholar
  13. [13]
    H. S. Burney and R. E. White,J. Electrochem. Soc. 135 (1988) 1609.Google Scholar
  14. [14]
    C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86 (1964) 5385.Google Scholar
  15. [15]
    Idem, ibid. 86 (1964) 5390.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • J. Divisek
    • 1
  • R. Jung
    • 1
  • D. Britz
    • 2
  1. 1.Nuclear Research Centre, JülichInstitute of Applied Physical ChemistryJülichFRG
  2. 2.Kemisk InstitutAarhus UniversitetAarhus CDenmark

Personalised recommendations