Biotechnology Letters

, Volume 13, Issue 8, pp 577–582 | Cite as

Decolorization of Kraft effluent by free and immobilized lignin peroxidases and horseradish peroxidase

  • Irene Ferrer
  • Marcia Dezotti
  • Nelson Durán
Article

Abstract

Color removal from Kraft effluent by lignin peroxidase and horseradish peroxidase was compared. Free lignin peroxidase and horseradish peroxidase removed color from kraft effluent. Immobilization of lignin peroxidase type III, lyophilized fungal culture and horseradish peroxidase on CNBr-Sepharose 4B improved the decolorization by factor of 2.9, 4.5 and 2.6, respectively in 48 h. Lignin peroxidase type I was effective only in the immobilized form in decolorization. In general, the immobilized form all the studied systems exhibited an average value around of 30% polymer consumption and very little of depolymerization. Lignin peroxidases and lyophilized fungal culture were shown to have considerable potential for treating Kraft effluents.

Keywords

Color Polymer Organic Chemistry Lignin Immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aust, S.D., Tien, M. and Bumpus, J.A. (1986). Eur. Patent Appl. O192 237 A1Google Scholar
  2. Davis, S. and Burns, R.G. (1990). Appl. Microbiol. Biotechnol. 32, 721–726.Google Scholar
  3. Durán, N., Ferrer, I. and Rodriguez, J. (1987) Appl. Biochem. Biotechnol. 16, 157–166.Google Scholar
  4. Farrell, R. (1987). PCT Patent WO 87/00564.Google Scholar
  5. Fawer, M.S., Stierli, J., Cliffe, S. and Fichter, A. (1991). Biochim. Biophys. Acta. 1076, 15–22.Google Scholar
  6. Forss, K., Joniken, K., Savolainen, M. and Williamson, H. (1989). Paper ja Puu-Paper and Timber 10, 1108–1112.Google Scholar
  7. Hakulinen, R. (1987) Second IAWPRC Symp. on Forest Ind. Wastewater June, Tampere, Finland.Google Scholar
  8. Henry, S., Koczan, J. and Richardson, T. (1974). Biotechnol. Bioeng. 16, 289–291.Google Scholar
  9. Hopkins, T.R. (1984). US Patent, 4.485.016.Google Scholar
  10. Huettermanns, A., Milstein, O. and Nicklos, B. (1988). Ger. D.E. Patent 3,827.001.Google Scholar
  11. Jurasek, L. and Paice, M.G. (1986). CHEMTECH, June 360–365.Google Scholar
  12. Kadima, T.A. and Pickard, M.A. (1990). Appl. Environ. Microbiol. 56, 3473–3477.Google Scholar
  13. Kennedy, J.F. and Cabral, J.M.S. (1987) In Enzyme Technology (J. F. Kennedy, Ed. VCH Publ. N.Y.) 7, 347–404.Google Scholar
  14. Klibanov, A.M. and Morris, E.D. (1981). Enzyme Microb. Technol. 3, 119–122.Google Scholar
  15. Kuo, J.Y. and Goldstein, J. (1983) Enzyme Microb. Technol. 5, 285–290.Google Scholar
  16. Lobarzenwski, J. and Paszczynski, A. (1985) Enzyme Microb. Technol. 7, 564–566.Google Scholar
  17. Paszczynski, A., Huynh, A.-B. and Crawford, R. (1986). Arch. Biochem. Biophys. 244, 750–765.Google Scholar
  18. Pharmacia (1986–1988). Affinity Chromatography. Principles and Methods (Ljungforetagen AB Press, Sweden). 14–18.Google Scholar
  19. Roy, S.K., Raha, S.K., Dey, S.K. and Chakrarty, S.C. (1989). Enzyme Microb. Technol. 11, 431–435.Google Scholar
  20. Shuttleworth, K.L. and Bollag, J.-M. (1986). Enzyme Microb. Technol. 8, 171–177.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Irene Ferrer
    • 1
  • Marcia Dezotti
    • 2
  • Nelson Durán
  1. 1.Facultad de QuímicaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Instituto de Química, Biological Chemistry LaboratoryUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations