Journal of Statistical Physics

, Volume 45, Issue 1–2, pp 1–25 | Cite as

On the statistical mechanics of the traveling salesman problem

  • G. Baskaran
  • Yaotian Fu
  • P. W. Anderson


We consider the statistical mechanics of the traveling salesman problem (TSP) and develop some representations to study it. In one representation the mean field theory has a simple form and brings out some of the essential features of the problem. It shows that the system has spontaneous symmetry breaking at any nonzero temperature. In general the phase progressively changes as one decreases the temperature. At low temperatures the mean field theory solution is very sensitive to any small perturbations, due to the divergence of some local susceptibilities. This critical region extends down to zero temperature. We perform the quenched average for a nonmetric TSP in the second representation and the resulting problem is more complicated than the infinite-range spin-glass problem, suggesting that the free energy landscape may be more complex. The role played by “frustration” in this problem appears explicitly through the localization property of a random matrix, which resembles the tight binding matrix of an electron in a random lattice.

Key words

spin glass N-P complete optimization problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,Science 220:671 (1983).Google Scholar
  2. 2.
    S. Kirkpatrick and G. Toulouse,J. Phys. (Paris) 46:1277 (1985).Google Scholar
  3. 3.
    G. Toulouse, inHeidelberg Symposium on Spin Glasses, I. Morgenstern and J. Van Hemmen, eds. Springer, 1983).Google Scholar
  4. 4.
    J. Vannimenus and M. Mezard,J. Phys. Lett. (Paris) 45:L-1145 (1984).Google Scholar
  5. 5.
    J. P. Bouchard and P. Le Doussal, École Normale (Paris) preprint (1985).Google Scholar
  6. 6.
    M. Mézard and G. Parisi, preprint (1985).Google Scholar
  7. 7.
    Y. Fu and P. W. Anderson,J. Phys. A, to appear; Y. Fu, Ph. D. Thesis, Princeton University (1985), unpublished.Google Scholar
  8. 8.
    R. Balian, R. Maynard, and G. Toulouse, eds.,Ill Condensed Matter (North-Holland, 1979).Google Scholar
  9. 9.
    E. L. Lawler, J. K. Leustra, A. H. G. Rinnooy Kan, and K. B. Shmoys, eds.The Travelling Salesman Problem (Wiley, 1985).Google Scholar
  10. 10.
    M. Garey and D. Johnson,Computers and Interactability (Freeman, 1982).Google Scholar
  11. 11.
    P. W. Anderson,Mat. Res. Bull. 5:549 (1970); J. A. Hertz, L. Fleishman, and P. W. Anderson,Phys. Rev. Lett. 43:942 (1979).Google Scholar
  12. 12.
    P. De Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979), Chapter 10.Google Scholar
  13. 13.
    H. Orland, C. Itzykson, and C. de Dominicis,J. Phys. Lett. (Paris) 46:L-353 (1985).Google Scholar
  14. 14.
    P. D. Antoniou and E. N. Economou,Phys. Rev. B 16:3768 (1977).Google Scholar
  15. 15.
    M. H. Cohen, inTopological Disorder in Condensed Matter, F. Yonezawa and T. Ninomiya, eds. (Springer, 1979), p. 122; G. Baskaran,Phys. Rev. B 33:7594 (1986).Google Scholar
  16. 16.
    D. J. Thouless, P. W. Anderson, and R. G. Palmer,Phil. Mag. 35:593 (1977).Google Scholar
  17. 17.
    J. J. Hopfield and D. Tank, preprint (1985).Google Scholar
  18. 18.
    D. J. Gross, Private communication.Google Scholar
  19. 19.
    G. Parisi and N. Sourlas,J. Physique Lett. (Paris) 41:L-403 (1980); A. J. Mckane,Phys. Lett. 76A:22 (1980).Google Scholar
  20. 20.
    Y. Fu and A. Khurana, unpublished; Y. Fu and G. Baskaran, unpublished.Google Scholar
  21. 21.
    H. Orland,J. Phys. Lett. (Paris) 46:L-763 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • G. Baskaran
    • 1
  • Yaotian Fu
    • 2
  • P. W. Anderson
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrinceton
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations