Transition Metal Chemistry

, Volume 16, Issue 2, pp 145–148 | Cite as

Electron transfer at tetrahedral cobalt(II). Part 1. Kinetics of bromate ion reduction

  • Godwin Adefikayo Ayoko
  • Johnson Femi Iyun
  • Ibrahim Faskari El-Idris
Full Papers

Summary

The bromate ion reduction by 12-tungstocobaltate(II) anion has been investigated. The reaction obeys the empirical rate law:-d[reductant]/dt=5(a+b[H+]2)[BrO 3 ][reductant]: where a=(2.49±0.18)×10−4M−1 s−1, b=(4.65±0.20)×10−5M−3s−1 at 24.5±0.1°C [H+]=0.05–1.50M and I=2.0M (NaClO4). This rate law is interpreted in terms of parallel reactions of BrO 3 and H2BrO 3 + . On the basis of the observed anion catalysis, substitution intertness of the reductant and Marcus type linear free energy relations, the outer sphere mechanism is proposed for both pathways.

Keywords

Free Energy Cobalt Inorganic Chemistry Catalysis Electron Transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. A. Ayoko and M. A. Olatunji,Polyhedron,2, 577 (1983).Google Scholar
  2. (2).
    G. A. Ayoko and M. A. Olatunji,Inorg. Chim. Acta,80 L15 (1983);ibid,Inorg. Chim. Acta,80, 287 (1983).Google Scholar
  3. (3).
    G. A. Ayoko and M. A. Olatunji,Polyhedron,3, 191 (1984).Google Scholar
  4. (4).
    G. A. Ayoko and M. A. Olatunji,Gazz. Chim. Ital.,21, 114 (1984).Google Scholar
  5. (5).
    M. A. Olatunji and G. A. Ayoko,Bull. Soc. Chim., FR.,5, 705 (1985).Google Scholar
  6. (6).
    G. A. Ayoko and M. A. Olatunji,Transition Met. Chem.,10, 7 (1985).Google Scholar
  7. (7).
    C. H. Brubaker and P. G. Rasmussen,Inorg. Chem.,3, 977 (1964).Google Scholar
  8. (8).
    M. T. Tope and G. M. Varga Jr.,Inorg. Chem.,5, 1249 (1966).Google Scholar
  9. (9).
    L. C. W. Baker and T. P. McCutcheon,J. Am. Chem. Soc.,78 4503 (1956).Google Scholar
  10. (10).
    L. C. W. Baker and V. E. Simmons,J. Am. Chem. Soc.,81, 4744 (1959).Google Scholar
  11. (11).
    S. K. Saha, M. C. Ghosh and P. Banerjee,Inorg. Chem. Acta,126, 26 (1987);J. Chem. Soc. Dalton Trans., 1301 (1986).Google Scholar
  12. (12).
    J. P. Birk,Inorg. Chem.,12, 2468 (1973).Google Scholar
  13. (13).
    R. C. Thompson,Inorg. Chem.,10, 1892 (1971).Google Scholar
  14. (14).
    G. C. Knight and R. C. Thompson,Inorg. Chem.,12, 63, (1973).Google Scholar
  15. (15).
    J. P. Birk and S. G. Kozub,Inorg. Chem.,17 1186, (1978).Google Scholar
  16. (16).
    J. P. Birk,Inorg. Chem.,17, 504 (1978).Google Scholar
  17. (17).
    J. P. Birk and S. G. Kozub,Inorg. Chem.,12, 2460 (1973).Google Scholar
  18. (18).
    C. Sharp and A. G. Sykes,Inorg. Chem.,27, 501 (1988).Google Scholar
  19. (19).
    J. N. Bronsted,Z. Phys. Chem.,102, 160 (1922).Google Scholar
  20. (20).
    R. G. Wilkins,The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes, Allyn and Bacon Boston, P. 111 (1974).Google Scholar
  21. (21).
    R. G. Marcus,J. Phys. Chem.,67, 853 (1963);Electrochi. Acta,13, 995 (1968).Google Scholar
  22. (22).
    A. Adegite, J. F. Iyun and J. F. Ojo,J. Chem. Soc. Dalton Trans., 115 (1977) and ref. therein.Google Scholar
  23. (23).
    T. J. Przystas and N. Sutin,J. Am. Chem. Soc.,95, 5545 (1973).Google Scholar
  24. (24).
    D. E. Pennington and A. Haim,Inorg. Chem.,6, 2137 (1967).Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Godwin Adefikayo Ayoko
    • 1
  • Johnson Femi Iyun
    • 1
  • Ibrahim Faskari El-Idris
    • 1
  1. 1.Department of ChemistryAhmadu Bello UniversityZariaNigeria

Personalised recommendations