Meteorology and Atmospheric Physics

, Volume 40, Issue 4, pp 189–193 | Cite as

A terrain-following coordinate system—Derivation of diagnostic relationships

  • R. A. Pielke
  • J. Cram
Article

Summary

Generalized hydrostatic and geostrophic equations can be derived from the equations in the terrain-following framework. The generalized hydrostatic equation permits some non-hydrostatic motions (as obtained from a Cartesian framework) to remain when a non-zero slope exists. Correspondingly, the generalized geostrophic wind permits a horizontal divergent component (in addition to divergence caused by the change of Coriolis parameter with latitude) to occur when the slope angle is not zero.

Keywords

Climate Change Waste Water Coordinate System Water Management Water Pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, C. B., Perkey, D. J., Kreitzberg, C. W., 1981: A numerical case study of the squall line of 6 May 1975.J. Atmos. Sci.,38, 1601–1615.Google Scholar
  2. Clark, T. L., 1977: A small-scale dynamic model using a terrain-following coordinate transformation.J. Comput. Phys.,24, 186–215.Google Scholar
  3. Dutton, J. A., 1976: The Ceaseless Wind, an Introduction to the Theory of Atmospheric Motion, New York, McGraw-Hill, 579 pp.Google Scholar
  4. Gal-Chen, T., Sommerville, C. J., 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations.J. Comp. Phys.,17, 209–228.Google Scholar
  5. Haltiner, J. J., 1971: Numerical Weather Prediction. New York, Wiley, 317 pp.Google Scholar
  6. Mahrer, Y., Pielke, R. A., 1975: A numerical study of the air flow over mountains using the two-dimensional version of the University of Virginia mesoscale model.J. Atmos. Sci.,32, 2144–2155.Google Scholar
  7. Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting.J. Meteorol.,14, 184–185.Google Scholar
  8. Physick, W. L., 1986: Application of mesoscale flow model in the irregular terrain of the Grand Canyon National Park. Prepared for Donald Henderson, National Park Service, Dept. of the Interior, Denver, Colorado under NPS contract#NA-85-RAH05045, Amendment 17, Item 15. 98 pp.Google Scholar
  9. Pielke, R. A., Martin, C. L., 1981: The derivation of a terrain-following coordinate system for use in a hydrostatic model.J. Atmos. Sci.,38, 1707–1713.Google Scholar
  10. Pielke, R. A., Martin, C. L., 1983: Reply to Wong and Hage.J. Atmos. Sci.,40, 2879–2880.Google Scholar
  11. Pielke, R. A., 1984: Mesoscale Meteorological Modeling. New York, Academic Press, 612 pp.Google Scholar
  12. Pielke, R. A., Segal, M., McNider, R. T., Mahrer, Y., 1985: Derivation of slope flow equations using two different coordinate representations.J. Atmos. Sci.,422, 1102–1106.Google Scholar
  13. Pielke, R. A., Cram, J. M., 1987: On an alternate procedure to analyze surface geostrophic winds and pressure over elevated terrain.Weather and Forecasting,2, 229–236.Google Scholar
  14. Sangster, W. E., 1960: A method of representing the horizontal pressure forces without reduction of station pressures to sea level.J. Meteor.,17, 166–176.Google Scholar
  15. Sangster, W. E., 1987: An impoved technique for computing the horizontal pressure-gradient force at the earth's surface.Mon. Wea. Rev.,115, 1358–1368.Google Scholar
  16. Tripoli, G. J., Cotton, W. R., 1983: The Colorado State University three-dimensional cloud/mesoscale model — 1982 Part I: General theoretical framework and sensitivity experiments.J. Rech. Atmos.,16, 185–219.Google Scholar
  17. Yamada, T., 1981: A numerical simulation of nocturnal drainage flow.J. Meteor. Soc. Japan,59, 108–122.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • R. A. Pielke
    • 1
  • J. Cram
    • 1
  1. 1.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations