Journal of Cluster Science

, Volume 1, Issue 4, pp 335–354 | Cite as

Dissociation and IVR pathways for the CF3H(H2O)3 cluster

  • Janice Tardiff
  • Ralph M. Deal
  • William L. Hase
  • Da-hong Lu
Article

Abstract

Classical trajectory simulations are used to study the intramolecular dynamics of isolated CF3H and the CF3H(H2O)3 cluster, by either exciting the CH stretch local mode to then=6 level or by adding an equivalent amount of energy to an OH stretch normal mode. Energy transfer from the CH local mode is statistically the same for CF3H(H2O)3 as for isolated CF3H, and agrees with previous experimental studies. Clusters excited with 6 quanta in the CH local mode are remarkably stable. Though the CF3H-(H2O)3 intermolecular potential is only 1.5 kcal/mol, only 1 of 26 clusters excited with 6 quanta in the CH local mode dissociate within 10 ps. The absorption linewidth for the CH local mode in CF3H(H2O)3 is related to IVR within CF3H and not to the unimolecular lifetime of the cluster. When an OH stretch normal mode of the cluster is excited, energy transfer to CF3H is negligible and nearly one half of the clusters dissociate within 10 ps.

Key words

CF3H(H2O) cluster dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Graener and A. Laubereau (1987).Chem. Phys. Letters 133, 378.Google Scholar
  2. 2.
    E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson (1987).Chem. Phys. Letters 134, 181.Google Scholar
  3. 3.
    L. Genberg, F. Heisel, G. McLendon, and R. J. Dwayne Miller (1987).J. Phys. Chem. 91, 5521.Google Scholar
  4. 4.
    I. Ohmine (1986).J. Chem. Phys. 85, 3342.Google Scholar
  5. 5.
    K. F. Freed and A. Nitzan (1980).J. Chem. Phys. 73, 4765.Google Scholar
  6. 6.
    R. H. Page, Y. R. Shen, and Y. T. Lee (1987).Phys. Rev. Lett. 59, 1293; ibid (1988).J. Chem. Phys. 88, 4621.Google Scholar
  7. 7.
    R. G. Bray and M. J. Berry (1979).J. Chem. Phys. 71, 4909; K. V. Reddy, D. F. Heller, and M. J. Berry (1982).J. Chem. Phys. 76, 2814.Google Scholar
  8. 8.
    K. K. Lehmann, B. H. Pate, and G. Scoles (1990).J. Chem. Phys. 93, 2152.Google Scholar
  9. 9.
    D. A. Chernoff, J. D. Myers, and J. G. Pruett (1986).J. Chem. Phys. 85, 3732.Google Scholar
  10. 10.
    J. E. Baggot, D. W. Law, P. D. Lightfoot, and I. M. Mills (1986).J. Chem. Phys. 85, 5414.Google Scholar
  11. 11.
    C. Manzanares I, N. L. S. Yamasaki, and E. Weitz (1987).J. Phys. Chem. 91, 3959.Google Scholar
  12. 12.
    A. W. Tarr and B. R. Henry (1984).Chem. Phys. Letters 112, 295.Google Scholar
  13. 13.
    D. E. Brabham and D. S. Perry (1984).Chem. Phys. Letters 103, 487.Google Scholar
  14. 14.
    P. Hofmann, R. B. Gerber, M. A. Ratner, L. C. Baylor, and E. Weitz (1988).J. Chem. Phys. 88, 7434; L. C. Baylor, E. Weitz, and P. Hofmann (1989).J. Chem. Phys. 90, 615.Google Scholar
  15. 15.
    J. W. Perry and A. H. Zewail (1984).J. Chem. Phys. 80, 5333; M. W. Crofton, C. G. Stevens, D. Klenerman, J. H. Gutow, and R. N. Zare (1988).J. Chem. Phys. 89, 7100.Google Scholar
  16. 16.
    C. S. Parmenter (1982).J. Phys. Chem. 86, 1735.Google Scholar
  17. 17.
    R. A. Coveleskie, D. A. Dolson, and C. S. Parmenter (1989).J. Phys. Chem. 89, 645, 655.Google Scholar
  18. 18.
    C. S. Parmenter and B. M. Stone (1986).J. Chem. Phys. 84, 4710.Google Scholar
  19. 19.
    H. L. Kim, T. K. Minton, R. S. Ruoff, T. J. Kulp, and J. D. McDonald (1988).J. Chem. Phys. 89, 3955; T. K. Minton, H. L. Kim, S. A. Reid, and J. D. McDonald (1988).J. Chem. Phys. 89, 6550; J. F. Kauffman, M. J. Côtè, P. G. Smith, and J. D. McDonald (1989).J. Chem. Phys. 90, 2874.Google Scholar
  20. 20.
    D.-h. Lu and W. L. Hase (1989).J. Chem. Phys. 91, 7490.Google Scholar
  21. 21.
    G. E. Ewing (1979).J. Chem. Phys. 71, 3143; G. E. Ewing (1987).J. Phys. Chem. 91, 4662.Google Scholar
  22. 22.
    Z. S. Huang, K. W. Jucks, and R. E. Miller (1986).J. Chem. Phys. 85, 3338.Google Scholar
  23. 23.
    K. E. Johnson, L. Wharton, and D. H. Levy (1978).J. Chem. Phys. 69, 2719.Google Scholar
  24. 24.
    Z. S. Huang and R. E. Miller (1987).J. Chem. Phys. 86, 6059.Google Scholar
  25. 25.
    K. W. Jucks, Z. S. Huang, and R. E. Miller (1987).J. Chem. Phys. 86, 1098.Google Scholar
  26. 26.
    R. E. Miller, P. F. Vohralik, and R. O. Watts (1984).J. Chem. Phys. 80, 5453.Google Scholar
  27. 27.
    K. W. Jucks and R. E. Miller (1988).J. Chem. Phys. 88, 6059.Google Scholar
  28. 28.
    H. Graener, T. Q. Ye, and A. Laubereau (1989).J. Phys. Chem. 93, 7044.Google Scholar
  29. 29.
    I. Ohmine (1987).J. Chem. Phys. 87, 6128; H. Tanaka and I. Ohmine (1989).J. Chem. Phys. 91, 6318.Google Scholar
  30. 30.
    M. Matsumoto and K. E. Gubbins (1990).J. Chem. Phys. 93, 1981.Google Scholar
  31. 31.
    H.-R. Dübal and M. Quack (1980).Chem. Phys. Letters 72, 342; ibid (1981).80, 439; H.-R. Dübal and M. Quack (1984).J. Chem. Phys. 81, 3779; H.-R. Dübal, M. Lewerenz, and M. Quack (1986).J. Chem. Phys. 85, 34; R. Marquardt, M. Quack, J. Stohner, and E. Sutcliffe (1986).J. Chem. Soc. Faraday Trans. 282, 1173; T. Carrington, Jr., L. Halonen, and M. Quack (1987).Chem. Phys. Letters 140, 512; J. Segall, R. N. Zare, H. R. Dübal, M. Lewerenz, and M. Quack (1987).J. Chem. Phys. 86, 634; and H.-R. Dübal, T.-K. Ha, M. Lewerenz, and M. Quack (1989).J. Chem. Phys. 91, 6698.Google Scholar
  32. 32.
    W. H. Green, Jr., W. D. Lawrence, and C. B. Moores (1987).J. Chem. Phys. 86, 6000.Google Scholar
  33. 33.
    A. S. Pine and J. M. Pliva (1988).J. Mol. Spectrosc. 130, 431; A. S. Pine, G. T. Fraser, and J. M. Pliva (1988).J. Chem. Phys. 89, 2720.Google Scholar
  34. 34.
    E. Kauppi and L. Halonen (1989).J. Chem. Phys. 90, 6980.Google Scholar
  35. 35.
    H. J. Böhm, R. Ahlrichs, P. Scharf, and H. Schiffer (1984).J. Chem. Phys. 81, 1389.Google Scholar
  36. 36.
    R. W. Kirk and P. M. Wilt (1975).J. Mol. Spec. 58, 102.Google Scholar
  37. 37.
    W. T. King, I. M. Mills, and B. Crawford (1957).J. Chem. Phys. 27, 455.Google Scholar
  38. 38.
    S. Califano,Vibrational States (John Wiley, New York, 1976), p. 177.Google Scholar
  39. 39.
    H. F. Chambers, R. W. Kirk, J. K. Thompson, M. I. Warner, and P. M. Wilt (1975).J. Mol. Spec. 58, 76; N. J. Fyke, P. Lockett, J. K. Thompson, and P. M. Wilt (1975).J. Mol. Spec. 58, 87.Google Scholar
  40. 40.
    CRC Handbook of Chemistry and Physics, 65th ed., R. C. Weast, Ed. (CRC Press, Boca Raton, Florida, 1984).Google Scholar
  41. 41.
    K. N. Swamy and W. L. Hase (1986).J. Chem. Phys. 84, 361.Google Scholar
  42. 42.
    R. J. Wolf, D. S. Bhatia, and W. L. Hase (1986).Chem. Phys. Letters 132, 493.Google Scholar
  43. 43.
    K. N. Swamy and W. L. Hase (1984).J. Am. Chem. Soc. 106, 4071.Google Scholar
  44. 44.
    W. L. Jorgensen (1982).J. Chem. Phys. 77, 4156.Google Scholar
  45. 45.
    G. Scoles (1980).Ann. Rev. Phys. Chem. 31, 81.Google Scholar
  46. 46.
    W. L. Hase, R. J. Duchovic, D.-h. Lu, K. N. Swamy, S. R. Vande Linde, X. Hu, and R. J. Wolf, Quantum Chemistry Program Exchange (to be submitted).Google Scholar
  47. 47.
    O. Matsuaka, E. Clementi, and M. Yoshimino (1976).J. Chem. Phys. 64, 1351.Google Scholar
  48. 48.
    C. S. Sloane and W. L. Hase (1977).J. Chem. Phys. 66, 1523; W. L. Hase, D. M. Ludlow, R. J. Wolf, and T. Schlick (1981).J. Phys. Chem. 85, 958; D.-h. Lu and W. L. Hase (1988).J. Phys. Chem. 92, 3217.Google Scholar
  49. 49.
    D.-h. Lu and W. L. Hase (1988).J. Chem. Phys. 89, 6723; W. H. Miller, W. L. Hase, and C. L. Darling (1989).J. Chem. Phys. 91, 2863; D. L. Clarke and M. A. Collins (1990).J. Chem. Phys. 92, 5602.Google Scholar
  50. 50.
    E. J. Heller, E. B. Stechel, and M. J. Davis (1979).J. Chem. Phys. 71, 4759; ibid (1980).73, 4720.Google Scholar
  51. 51.
    W. L. Hase, inDynamics of Molecular Collisions, Part B, W. H. Miller, ed. (Plenum, New York, 1976), p. 121; J. I. Steinfeld, J. S. Francisco, and W. L. Hase,Chemical Kinetics and Dynamics (Prentice Hall, Englewood Cliffs, New Jersey, 1989), Chapter 11.Google Scholar
  52. 52.
    W. L. Hase (1983).Acc. Chem. Res. 16, 258.Google Scholar
  53. 53.
    S. J. Klippenstein and R. A. Marcus (1989).J. Chem. Phys. 91, 2280.Google Scholar
  54. 54.
    X. Hu and W. L. Hase,J. Comput. Chem. (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Janice Tardiff
    • 1
  • Ralph M. Deal
    • 1
  • William L. Hase
    • 2
  • Da-hong Lu
    • 3
  1. 1.Department of ChemistryKalamazoo CollegeKalamazoo
  2. 2.Department of ChemistryWayne State UniversityDetroit
  3. 3.Department of Chemistry and Supercomputer InstituteUniversity of MinnesotaMinneapolis

Personalised recommendations