Transition Metal Chemistry

, Volume 15, Issue 1, pp 71–74 | Cite as

Neutral, cationic and dicationic seven-coordinate complexes of molybdenum(II) and tungsten(II) containing mono- and bidentate nitrogen donor ligands

  • Paul K. Baker
  • Lesley L. Howells
  • Stuart G. Fraser
  • Gordon W. Rogers
  • Martin J. Snowden
Full Papers

Summary

The seven-coordinate complexes [MI2(CO)3(NCMe)2] (M=Mo or W) react with two equivalents of L(L=py, 4Me-py, 3Cl-py or 3Br-py) or one equivalent of NN {NN=2,2′-bipyridine(bipy), 1,10-phenanthroline(phen), 5,6-dimethyl-1, 10-phenanthroline (5,6-Me2-1, 10-phen), 5-Nitro-1, 10-phenanthroline (5-NO2-1, 10-phen) and C6H4(o-NH2)2 (o-diam) (for M=Mo only)} in CH2Cl2 at room temperature to give the substituted products [MI2(CO)3L2] or [MI2(CO)3(NN)] (1–17) in high yield. The compounds [MI2(CO)3(NCMe)2] react with two equivalents of NN (for M=W, NN=bipy; for M=Mo, NN=phen) to give the dicationic salts [M(CO)3(NN)2]2I(18–19). The compounds [MI2(CO)3(NCMe)2] (M=Mo or W) react with two equivalents of 5,6-Me2-1, 10-phen to yield the monocationic dicarbonyl compounds [MI(CO)2(5,6-Me2-phen)2]I (20 and21). The dicationic mixed ligand complexes [M(CO)3(bipy)(5,6-Me2-phen)]2I (22 and23) are prepared by reacting [MI2(CO)3(NCMe)2] with one equivalent of bipy, followed by anin situ reaction with 5,6-Me2-1, 10-phen to afford the products22 and23. The complexes (1–23) described in this paper have been characterised by elemental analysis (C, H and N), i.r. spectroscopy and, in selected cases,1Hn.m.r. spectroscopy. Magnetic susceptibility measurements show the compounds to be diamagnetic.

Keywords

CH2Cl2 Magnetic Susceptibility Phen Bipy Bipyridine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. L. Nigam, R. S. Nyholm and M. H. B. Stiddard,J. Chem. Soc., 1806 (1960).Google Scholar
  2. (2).
    R. Colton and I. B. Tomkins,Aust. J. Chem.,19, 1143 (1966).Google Scholar
  3. (3).
    R. Colton and I. B. Tomkins,Aust. J. Chem.,19, 1519 (1966).Google Scholar
  4. (4).
    M. W. Anker, R. Colton and I. B. Tomkins,Aust. J. Chem.,20, 9 (1967).Google Scholar
  5. (5).
    M. W. Anker, R. Colton and I. B. Tomkins,Aust. J. Chem.,21, 1159 (1968).Google Scholar
  6. (6).
    J. A. Bowden and R. Colton,Aust. J. Chem.,21, 2657 (1968).Google Scholar
  7. (7).
    R. Colton and C. J. Rix,Aust. J. Chem.,22, 305 (1969).Google Scholar
  8. (8).
    R. Colton and C. J. Rix,Aust. J. Chem.,22, 2535 (1969).Google Scholar
  9. (9).
    R. Colton and J. J. Howard,Aust. J. Chem.,22, 2543 (1969).Google Scholar
  10. (10).
    R. Colton and J. J. Howard,Aust. J. Chem.,23, 223 (1970).Google Scholar
  11. (11).
    M. G. B. Drew, I. B. Tomkins and R. Colton,Aust. J. Chem.,23, 2517 (1970).Google Scholar
  12. (12).
    R. Colton,Coord Chem. Rev.,6, 269 (1971).Google Scholar
  13. (13).
    R. Colton and J. Kevekordes,Aust. J. Chem.,35, 895 (1982).Google Scholar
  14. (14).
    R. Colton and P. Panagiotidou,Aust. J. Chem.,40, 13 (1987).Google Scholar
  15. (15).
    L. Bencze and A. Kraut-Vass,J. Mol. Catal.,28, 369 (1985).Google Scholar
  16. (16).
    L. Bencze, A. Kraut-Vass and L. Prókal,J. Chem. Soc. Chem. Commun., 911 (1985).Google Scholar
  17. (17).
    P. K. Baker, S. G. Fraser and E. M. Keys,J. Organometal. Chem.,309, 319 (1986).Google Scholar
  18. (18).
    P. K. Baker and S. G. Fraser,Inorg. Chim. Acta,116, L3 (1986).Google Scholar
  19. (19).
    J. R. Moss and B. L. Shaw,J. Chem. Soc. A, 595 (1970).Google Scholar
  20. (20).
    S. C. Tripathi, S. C. Srivastava and D. P. Pandey,Transition Met. Chem.,2, 52 (1977).Google Scholar
  21. (21).
    R. Colton and C. J. Rix,Aust. J. Chem.,21, 1155 (1968).Google Scholar
  22. (22).
    M. G. B. Drew, A. W. Johans and A. P. Wolters,J. Chem. Soc., Chem. Commun., 819 (1971).Google Scholar
  23. (23).
    A. Mawby and G. E. Pringle,J. Inorg. Nucl. Chem.,34, 517 (1972).Google Scholar
  24. (24).
    M. G. B. Drew,J. Chem. Soc., Dalton Trans., 1329 (1972).Google Scholar
  25. (25).
    G. Schmid, R. Boese and E. Welz,Chem. Ber.,108, 260 (1975).Google Scholar
  26. (26).
    J. D. Dewan, K. Henrick, D. L. Kepert, K. R. Trigwell, A. H. White and S. B. Wild,J. Chem. Soc., Dalton Trans., 546 (1975).Google Scholar
  27. (27).
    M. G. B. Drew and J. D. Wilkins,J. Chem. Soc., Dalton Trans., 1984 (1975).Google Scholar
  28. (28).
    M. G. B. Drew and C. J. Rix,J. Organometal. Chem.,102, 467 (1975).Google Scholar
  29. (29).
    M. G. B. Drew, A. Pek, A. P. Wolters and I. B. Tomkins,J. Chem. Soc., Dalton Trans., 557 (1977).Google Scholar
  30. (30).
    M. G. B. Drew, A. Pek, A. P. Wolters and I. B. Tomkins,J. Chem. Soc., Dalton Trans., 974 (1977).Google Scholar
  31. (31).
    M. G. B. Drew, P. K. Baker, E. M. Armstrong and S. G. Fraser,Polyhedron,7, 245 (1988).Google Scholar
  32. (32).
    M. B. Hursthouse, M. A. Thornton-Pett, J. A. Connor and C. Overton,Acta Crystallogr.,184, C41 (1985).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Paul K. Baker
    • 1
  • Lesley L. Howells
    • 1
  • Stuart G. Fraser
    • 1
  • Gordon W. Rogers
    • 1
  • Martin J. Snowden
    • 1
  1. 1.Department of ChemistryUniversity College of North WalesBangorUK

Personalised recommendations