Transition Metal Chemistry

, Volume 15, Issue 1, pp 48–50 | Cite as

The rhodium-catalysed methanolysis of aryl acetates and of the hexafluorophosphate anion

  • Jane E. Dunlop
  • Roy P. Houghton
Full Papers
  • 28 Downloads

Summary

In nitromethane, the methanolysis of aryl acetates is catalysed by the tetrafluoroborate and hexafluorophosphate salts of the (η5-ethyltetramethylcyclopentadienyl) (η6-benzen)rhodium(III) cation. Under the conditions of the methanolysis, the anion of the latter salt reacts with methanol to give dimethyl phosphorofluoridate. The hydrogen fluoride formed also in this reaction is thought to be responsible for the greater efficiency of the hexafluorophosphate salt as a catalyst for the methanolysis.

Keywords

Hydrogen Acetate Methanol Physical Chemistry Inorganic Chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. Wu, E. R. Biehl and P. C. Reeves,J. Chem. Soc., Perkin Trans.,2, 449 (1972).Google Scholar
  2. (2).
    F. G. Bordwell and G. D. Cooper,J. Amer. Chem. Soc.,74, 1058 (1952).Google Scholar
  3. (3).
    S. G. Davies,Organotransition Metal Chemistry-Applications to Organic Synthesis, Pergamon Press, Oxford, 1982. For specific examples see: J. Blagg and S. G. Davies,J. Chem. Soc., Chem. Commun, 492 (1986); S. J. Coote and S. G. Davies,J. Chem. Soc., Chem. Commun., 648 (1988); G. Jaouen, S. Top, A. Laconi and D. Couturier,J. Amer. Chem. Soc.,106, 2207 (1984).Google Scholar
  4. (4).
    P. M. Triechel and L. D. Rosenheim,Inorg. Chem.,20, 942 (1981).Google Scholar
  5. (5).
    C. White, S. J. Thompson and P. M. Maitlis,J. Organomet. Chem. 127, 415 (1977).Google Scholar
  6. (6).
    C. White, S. J. Thompson and P. M. Maitlis,J. Chem. Soc., Dalton Trans., 1654 (1977).Google Scholar
  7. (7).
    N. A. Bailey, E. H. Blunt, G. Fairhurst and C. White,J. Chem. Soc., Dalton Trans., 829 (1980).Google Scholar
  8. (8).
    Dictionary of Organic Compounds, 5th Edn, Chapman and Hall, London, 1982.Google Scholar
  9. (9).
    R. P. Houghton, M. Voyle and R. Price,J Chem. Soc., Perkin Trans. I, 925 (1984).Google Scholar
  10. (10).
    T. Nishioka, T. Fujita, K. Kitamura and M. Nakajima,J. Org. Chem. 40, 2520 (1975).Google Scholar
  11. (11).
    L. A. Cohen and S. Takehashi,J. Amer. Chem. Soc.,95, 443 (1973).Google Scholar
  12. (12).
    P. M. Treichel and G. Werber,Inorg. Chem.,4, 1098 (1965).Google Scholar
  13. (13).
    J. F. Nixon and R. Schmutzler,Spectrochim. Acta 20, 1835 (1964).Google Scholar
  14. (14).
    W. J. Stec, J. R. Van Wazer and N. Goddard,J. Chem. Soc., Perkin Trans.,2, 463 (1972).Google Scholar
  15. (15).
    G. S. Reddy and R. Schmutzler,A. Naturforsch., B.,25, 1199 (1970).Google Scholar
  16. (16).
    P. P. Mager,Pharmazie,36, 511 (1981).Google Scholar
  17. (17).
    F. L. Wimmer and M. R. Snow,Aust. J. Chem.,31, 267 (1978).Google Scholar
  18. (18).
    G. Fairhurst and C. White,J. Chem. Soc., Dalton Trans., 1524 (1979).Google Scholar
  19. (19).
    S. J. Thompson, P. M. Bailey, C. White and P. M. Maitlis,Angew. Chem. Int. Edn Engl.,15, 490 (1976).Google Scholar
  20. (20).
    C. White, S. J. Thompson and P. M. Maitlis,J. Organometal. Chem. 134, 319 (1977).Google Scholar
  21. (21).
    J. W. Kang and P. M. Maitlis,J. Organometal. Chem. 30, 127 (1971).Google Scholar
  22. (22).
    A. Nutton, P. M. Bailey and P. M. Maitlis,J. Chem. Soc., Dalton Trans., 1997 (1981).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Jane E. Dunlop
    • 1
  • Roy P. Houghton
    • 1
  1. 1.School of Chemistry and Applied ChemistryUniversity of Wales College of CardiffCardiffUK

Personalised recommendations