Skip to main content
Log in

Abstract

The method of weighted least squares is shown to be an appropriate way of fitting variogram models. The weighting scheme automatically gives most weight to early lags and down-weights those lags with a small number of pairs. Although weights are derived assuming the data are Gaussian (normal), they are shown to be still appropriate in the setting where data are a (smooth) transform of the Gaussian case. The method of (iterated) generalized least squares, which takes into account correlation between variogram estimators at different lags, offer more statistical efficiency at the price of more complexity. Weighted least squares for the robust estimator, based on square root differences, is less of a compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, M., 1984, Improving the estimation and modelling of the variogram,in G. Verly et al. (Eds.) Geostatistics for natural resources characterization: Dordrecht, Reidel, p. 1–19.

    Google Scholar 

  • Armstrong, M. and Delfiner, P., 1980, Towards a more robust variogram: A case study on coal, Internal note N-671: Centre de Geostatistique, Fontainebleau, France.

    Google Scholar 

  • Buxton, B., 1982, A geostatistical case study, unpublished masters thesis: Stanford University, California, 84 p.

    Google Scholar 

  • Carroll, R. J. and Ruppert, D., 1982, A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model:Jour. Amer. Stat. Assoc., v. 77, p. 878–882.

    Google Scholar 

  • Clark, I., 1979, Practical geostatistics: Applied Science Publishers, Essex, England, 129 p.

    Google Scholar 

  • Cressie, N. A. C., 1979, Straight line fitting and variogram estimation (with discussion):Bull. Inter. Stat. Inst., v. 48, Book 3, p. 573–582.

    Google Scholar 

  • Cressie, N. A. C., 1980, M-estimation in the presence of unequal scale.Stat. Neerlandica, v. 34, p. 19–32.

    Google Scholar 

  • Cressie, N. A. C., 1984, Towards resistant geostatistics, in G. Verley et al. (Eds.) Geostatistics for natural resources characterization: Dordrecht, Reidel, p. 21–44.

    Google Scholar 

  • Cressie, N. A. C. and Glonek, G., 1984, Median based covariogram estimators reduce bias:Stat. Prob. Lett., v. 2, p. 299–304.

    Google Scholar 

  • Cressie, N. A. C. and Hawkins, D. M., 1980, Robust estimation of the variogram:Jour. Inter. Assoc. Math. Geol., v. 12, p. 115–125.

    Google Scholar 

  • David, M., 1977, Geostatistical ore reserve estimation: Amsterdam, Elsevier, 364 p.

    Google Scholar 

  • Davis, B. M. and Borgman, L. E., 1982, A note on the asymptotic distribution of the sample variogram:Jour. Inter. Assoc. Math. Geol., v. 14, p. 189–193.

    Google Scholar 

  • Delfiner, P., 1976, Linear estimation of nonstationary spatial phenomena, in M. Guarascio et al. (Eds.) Advanced geostatics in the mining industry: Dordrecht, Reidel, p. 49–68.

    Google Scholar 

  • Diamond, P. and Armstrong, M., 1983, Robustness of variograms and conditioning of kriging matrices: Internal note N-804, Centre de Geostatistique, Fontainebleau, France.

    Google Scholar 

  • Gomez, M. and Hazen, K., 1970, Evaluating sulfur and ash distribution in coal seams by statistical response surface regression analysis: U.S. Bureau of Mines Report, RI 7377.

  • Hawkins, D. M. and Cressie, N. A. C., 1984, Robust kriging—a proposal: Jour. Inter. Assoc. Math. Geol., v. 16, p. 3–18.

    Google Scholar 

  • Huber, P. J., 1964, Robust estimation of a location parameter: Ann. Math. Stat., v. 35, p. 73–101.

    Google Scholar 

  • Journel, A. and Huijbregts, C., 1978, Mining geostatistics: London, Academic Press, 600 p.

    Google Scholar 

  • King, H. F., McMahon, D. W., and Bujtor, G. J., 1982, A guide to the understanding of ore reserve estimation,in Proceedings of the Australasian Institute of Mining and Metallurgy, Supplement: v. 281, p. 1–21.

    Google Scholar 

  • Matheron, G., 1963, Principles of geostatistics: Econ. Geol., v. 58, p. 1246–1266.

    Google Scholar 

  • Matheron, G., 1971, The theory of regionalized variables and its applications: Cahiers du Centre de Morphologie Mathematique, No. 5, Fontainebleau, France.

    Google Scholar 

  • Sharp, W. E., 1982, Estimation of semi-variograms by the maximum entropy method:Jour. Inter. Assoc. Math. Geol., v. 14, p. 456–474.

    Google Scholar 

  • Starks, T. and Fang, J., 1982a, On the estimation of the generalized covariance function: Jour. Inter. Assoc. Math. Geol., v. 14, p. 57–64.

    Google Scholar 

  • Starks, T. and Fang, J., 1982b, The effect of drift on the experimental semi-variogram: Jour. Inter. Assoc. Math. Geol., v. 14, p. 309–320.

    Google Scholar 

  • Switzer, P., 1984, Inference for spatial autocorrelation functions in G. Verly et al. (Eds.) Geostatistics for natural resources characterization: Dordrecht, Reidel, p. 127–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cressie, N. Fitting variogram models by weighted least squares. Mathematical Geology 17, 563–586 (1985). https://doi.org/10.1007/BF01032109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01032109

Key words

Navigation