Skip to main content
Log in

Parameterization of a momentum source in a tropical cumulus ensemble

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

An eddy effect of tropical deep convection on the large-scale momentum, resp vorticity budget is investigated. The process is specified by a simple parameterization approach which is based on a concept of rotating clouds exerting a momentum on the large-scale flow. The cloud rotation is associated with the thermal properties of a cloud ensemble by the principle of conservation of potential vorticity. A decomposition of cloud classes is applied in consistency with the thermodynamical parameterization scheme of Arakawa and Schubert (1974).

The parameterization is tested with observations of GATE74, Phase III. The data are processed on a B/C-scale grid (55km) in a region within 9N and 16N, and between 21W and 27W, and with a vertical resolution of 41 levels. The parameterization results correspond to the observed patterns, especially in situations with strong large-scale wind shear. The findings suggest that certain large-scalle flow regimes provoke convective scale momentum generation rather than redistributing large-scale momentum by convective circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., Schubert, W. M., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I.J. Atmos. Sci. 31, 674–701.

    Google Scholar 

  • Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment.Quart. J. Roy. Meteor. Soc.,64, 325–330.

    Google Scholar 

  • Cho, H.-R., 1977: Contributions of cumulus cloud life-cycle effects to the large-scale heat and moisture budget equations.J. Atmos. Sci.,34, 87–97.

    Google Scholar 

  • Cho, H.-R., 1985: Rates of entrainment and detrainment of momentum of cumulus clouds.Mon. Wea Rev.,113, 1920–1932.

    Google Scholar 

  • Cho, H. R., Jenkins, M. A., 1987: The thermal structure of tropical easterly waves.J. Atmos. Sci. 44, 2531–2539.

    Google Scholar 

  • Coelho, S. L. V., Hunt, J. C. R., 1989: The dynamics of the near field of strong jets in crossflows.J. Fluid Mech.,200, 95–120.

    Google Scholar 

  • Dugdale, G., 1975: Report on the field phase of the GARP Atlantic Tropical Experiment. Meteorological Atlas. GATE Report No. 17. Global Atmospheric Research Program. International Scientific and Management Group. WMO. 179 pp.

  • Dutton, J. A., 1986:The Ceaseless Wind. An Introduction to the Theory of Atmospheric Motion. New York: Dover Edition, p. 375.

    Google Scholar 

  • Esbensen, S. K., Shapiro, L. J., Tollerud, E. I. 1987: The consistent parameterization of the effects of cumulus clouds on the large-scale momentum and vorticity fields.Mon. Wea. Rev. 115, 664–669.

    Google Scholar 

  • Fraedrich, K., 1974: Dynamic and thermodynamic aspects of the parameterization of cumulus convection: part II.J. Atmos. Sci. 31, 1838–1849.

    Google Scholar 

  • Hantel, M., Hacker, J. M., 1978: On the vertical eddy transports in the northern atmosphere. 2. Vertical eddy momentum transport for summer and winter.J. Geophys. Res. 83, 1305–1318.

    Google Scholar 

  • Hitschfeld, W., 1960: The motion and erosion of convective storms in severe vertical wind shear.J. Meteor.,17, 270–282.

    Google Scholar 

  • Houze, R. A., 1973: A climatology study of vertical transports by cumulus-scale convection.J. Atmos. Sci.,30, 1112–1123.

    Google Scholar 

  • Houze, R. A., Betts, A. K., 1981: Convection in GATE.Rev. Geophys. Space Phys.,19, 541–576.

    Google Scholar 

  • Hudlow, M. D., Patterson, V. L., 1979: GATE radar rainfall atlas. NOAA special report. Washington D.C., 155 pp.

  • Jenkins, M. A., Cho, H.-R., 1991. An observational study of first-order vorticity dynamics in a tropical easterly wave.J. Atmos. Sci.,48, 965–975.

    Google Scholar 

  • König, W., Ruprecht, E., 1986: Investigation of the diagnostic determination of cumulus cloud mass fluxes by the parameterization of Arakawa and Schubert.Beitr. Phys. Atmosph.,59, 237–250.

    Google Scholar 

  • König, W., Ruprecht, E., 1989: Effects of convective clouds on the large-scale vorticity budget.Meteorol. Atmos. Phys.,41, 213–239.

    Google Scholar 

  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. In: Bengtsson, L., Lighthill J. (eds.)Intense Atmospheric Vortices. Berlin, Heidelberg, New York: Springer, pp. 149–160.

    Google Scholar 

  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa—Schubert cumulus parameterization.J. Atmos. Sci.,39, 88–103.

    Google Scholar 

  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear.Quart. J. Roy. Meteor. Soc.,78, 530–542.

    Google Scholar 

  • Mansfield, D. A., 1977: Squall lines observed in GATE.Quart. J. Roy. Meteor. Soc.,103, 569–574.

    Google Scholar 

  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties.Quart. J. Roy. Meteor. Soc.,107, 29–50.

    Google Scholar 

  • Ooyama, K. V., 1987: Scale-controlled objective analysis.Mon. Wea. Rev.,115, 2479–2506.

    Google Scholar 

  • Pearce, R. P., Omotosho, J. B., 1986: An analysis of convective systems on a 100-km scale during GATE.Mon. Wea. Rev.,114, 1425–1444.

    Google Scholar 

  • Reed, R. J., Norquist, D. C., Recker, E. E., 1977: The structure and properties of Africa wave disturbances as observed during Phase III of GATE.Mon. Wea. Rev.,105, 317–333.

    Google Scholar 

  • Riehl, H., Malkus, J. S., 1958: On the heat balance in the equatorial trough zone.Geophysica,6, 503–538.

    Google Scholar 

  • Ruprecht, E., 1982a: An investigation of tropical cloud clusters over the GATE area. Part I: the environmental fields of the cloud ensembles within the cloud clusters.Beitr. Phys. Atmosph.,55, 61–78.

    Google Scholar 

  • Ruprecht, E., 1982b: An investigation of the tropical cloud clusters over the GATE area. Part II: vertical transport by cumulus and cumulonimbus drafts and energy budgets.Beitr. Phys. Atmosph.,55, 85–107.

    Google Scholar 

  • Ruprecht, E., Gray, W. M., 1976: Analysis of satellite-observed tropical cloud clusters. I. Wind and dynamic fields.Tellus,28, 391–413.

    Google Scholar 

  • Schneider, E. K., Lindzen, R. S., 1976: A discussion of the parameterization of momentum exchange by cumulus convection.J. Geophys. Res.,81, 3158–3160.

    Google Scholar 

  • Stevens, D. E., 1979: Vorticity momentum and divergence budgets of synoptic-scale wave disturbances in the tropical eastern Atlantic.Mon. Wea. Rev.,107, 535–550.

    Google Scholar 

  • Schubert, W. M., 1973: The interaction of a cumulus cloud ensemble with the large-scale environment. Ph. D. thesis, University of California, Los Angeles.

    Google Scholar 

  • Shao, Y., Hantel, M., 1989: Vertical subsynoptic momentum flux in the atmosphere over central Europe.Quart. J. Roy. Meteor. Soc.,115, 1355–1372.

    Google Scholar 

  • Sui, C.-H., Chang, M.-D., Wu, X., Yanai, M., 1989: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part II: Parameterization.J. Atmos. Sci.,46, 1609–1629.

    Google Scholar 

  • Zhang, G. J., Cho, H.-R., 1991a: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory.J. Atmos. Sci.,48, 1483–1492.

    Google Scholar 

  • Zhang, G. J., Cho, H.-R., 1991b: Parameterization of the vertical transport of momentum by cumulus clouds. Part II: Application.J. Atmos. Sci.,48, 2448–2457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, W. Parameterization of a momentum source in a tropical cumulus ensemble. Meteorl. Atmos. Phys. 52, 153–167 (1993). https://doi.org/10.1007/BF01031874

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01031874

Keywords

Navigation