Journal of Materials Science

, Volume 10, Issue 9, pp 1603–1607 | Cite as

Microstructure of crazes in solvent-crazed polycarbonate thin films

  • Edwin L. Thomas
  • Sheldon J. Israel


Crazes have been produced in polycarbonate by atomizing acetone over uniaxial stressed solvent cast thin films. Transmission electron microscopy shows that two types of craze orientation exist. Crazes are formed perpendicular to the applied stress direction and at approximately 55° to the applied stress direction. The craze structures observed at 55° to the applied stress direction are suggested to result from cavitation of pre-existing deformation bands. The internal morphology of each type of craze is similar, and the fibre diameter, void size and craze width of each type depends on the amount of craze development. The structure of the craze-matrix interface is, however, different for each type of craze. Necking and work-hardening of the fibres occurs at the normal craze-matrix interface, whereas a rough undrawn interface exists for the angular crazes.


Polymer Microstructure Thin Film Transmission Electron Microscopy Acetone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Kambour,Polymer 5 (1964) 143.Google Scholar
  2. 2.
    R. P. Kambour andR. R. Russell,ibid 12 (1971) 237.Google Scholar
  3. 3.
    R. P. Kambour andA. S. Holik,J. Polymer Sci. A-2 7 (1969) 1393.Google Scholar
  4. 4.
    D. Hull, in “Deformation and Fracture of High Polymers”, edited by H. H. Kausch, J. A. Hassel, R. I. Jaffee (Plenum Press, New York, 1973).Google Scholar
  5. 5.
    S. T. Wellinghoff andE. Baer,A. P. S. Bulletin 19 (1974) 377.Google Scholar
  6. 6.
    G. A. Bernier andR. P. Kambour,Macromolecules 1 (1968) 393.Google Scholar
  7. 7.
    G. W. Miller, S. A. D. Visser andA. S. Morecraft,Poly. Engr. Sci. 11 (1971) 73.Google Scholar
  8. 8.
    R. P. Kambour, C. L. Gurner andE. E. Ramagosa,Macromolecules 7 (1974) 248.Google Scholar
  9. 9.
    P. Beahan, M. Bevis andD. Hull,Polymer 14 (1973) 96.Google Scholar
  10. 10.
    A. Nadai, „Theory of Flow and Fracture of Solids” (McGraw Hill, New York, 1950).Google Scholar
  11. 11.
    R. Kambour,J. Polymer Sci. Macromol. Revs. 7 (1973) 1.Google Scholar
  12. 12.
    J. S. Harris andI. M. Ward,J. Mater. Sci. 5 (1970) 573.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1975

Authors and Affiliations

  • Edwin L. Thomas
    • 1
  • Sheldon J. Israel
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations