Advertisement

Biotechnology Letters

, Volume 14, Issue 1, pp 11–16 | Cite as

Mechanical properties of hybridoma cells in batch culture

  • Z. Zhang
  • M. Al-Rubeai
  • C. R. Thomas
Article

Summary

Direct measurements throughout a batch culture of bursting force, bursting membrane tension, elastic area compressibility modulus, and the size of single hybridoma cells have been made by a novel micromanipulation technique. It has been found that the bursting membrane tension and compressibility modulus rise significantly in the rapid growth phase, and fall in the death phase. An approach is suggested for relating these mechanical properties to the shear sensitivity of the cells when they are exposed to shear stresses in flow fields. It is shown that reports of changes in hybridoma fragility during batch cultures, as measured using viscometers, might be explained using more fundamental micromanipulation measurements.

Keywords

Mechanical Property Shear Stress Flow Field Compressibility Growth Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rubeai, M., Chalder, S., Emery, A. N., and Bird, R. (1991).Chimicaoggi 9, 36–40.Google Scholar
  2. Al-Rubeai, M., and Emery, A. N. (1990).J. Biotechnol. 16, 67–86.Google Scholar
  3. Bleim, R. (1989).Trends Biotechnol. 7, 197–200.Google Scholar
  4. Chalmers, J. J., and Bavarian, F. (1991).Biotechnol. Progress 7, 151–158.Google Scholar
  5. Cherry, R. S., and Kwon, K.-Y. (1990).Biotechnol. Bioeng. 36, 563–571.Google Scholar
  6. Frame, K. K., Hu, W.-S. (1990).Biotechnol. Bioeng. 36, 191–197.Google Scholar
  7. Goldblum, S., Bae, Y., Hink, W. F., and Chalmers, J. (1990).Biotechnol. Progress. 6, 383–390.Google Scholar
  8. Handa-Corrigan, A., Emery, A. N., and Spier, R. E. (1989).Enzyme Microb. Technol. 11, 230–235.Google Scholar
  9. Levich, V. (1962).Physical-Chemical Hydrodynamics, New Jersey: Prentice-Hall.Google Scholar
  10. McQueen, A., Meilhoc, E., and Bailey, J. M. (1987).Biotechnol. Letters, 9, 831–836.Google Scholar
  11. Michaels, J. D., Petersen, J. F., McIntire, L. V., and Papoutsakis, E. T. (1991).Biotechnol. Bioeng. 38, 169–180.Google Scholar
  12. Murhammer, D. W., and Goochee, C. F. (1990).Biotechnol. Progress. 6, 142–148.Google Scholar
  13. Oh, S. K. W., Nienow, A. W., Al-Rubeai, M., and Emery, A. N. (1989).J. Biotechnol. 12, 45–62.Google Scholar
  14. Orton, D. R., and Wang, D. I. C., (1990). AICHE Annual Meeting, Chicago, IL, Nov, Paper No. 103B.Google Scholar
  15. Peterson, J. F., McIntire, L. V., and Papoutsakis, E. T. (1990).Biotechnol. Progress. 7, 229–246.Google Scholar
  16. Phillips, H. J. (1973). In:Tissue Culture: Methods and Application, P. F. Kruse, M. K. Patterson, eds. pp. 406–408, New York: Academic Press.Google Scholar
  17. Pol, L., and Tramper, J. (1991).Abstracts of 11th ESACT Meeting, Brighton, England.Google Scholar
  18. Smith, C. G., Greenfield, P. F., and Randerson, D. H. (1987).Biotechnol. Techniques 1, 39–44.Google Scholar
  19. Zhang, Z., Ferenczi, M. A., Lush, A. C., and Thomas, C. R. (1991a).Applied Microbiol. Biotechnol. 36, 208–210.Google Scholar
  20. Zhang, Z., Ferenczi, M. A. and Thomas, C. R. (1991b).Chem. Eng. Sci. in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Z. Zhang
    • 1
  • M. Al-Rubeai
    • 1
  • C. R. Thomas
    • 1
  1. 1.School of Chemical EngineeringThe University of BirminghamBirminghamUK

Personalised recommendations