Radiophysics and Quantum Electronics

, Volume 13, Issue 11, pp 1329–1334 | Cite as

The transition probability in the problem of random search and integration over trajectories

  • A. I. Yablonskii


Random Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. B. Yudin, Izv. Akad. Nauk SSSR, Tekhnicheskaya Kibernetika, No. 1 (1966).Google Scholar
  2. 2.
    É. M. Vaisbord, Izv. Akad. Nauk SSSR, Teknicheskaya Kibernetika, No. 4, 24 (1967).Google Scholar
  3. 3.
    A. I. Yablonskii, Izv. VUZ, Radiofiz.,13, No. 8, 1229 (1970).Google Scholar
  4. 4.
    F. W. Wiegel, “Functional integration and the Brownian movement in a field of force,” Physics,37, 105 (1967).Google Scholar
  5. 5.
    G. I. Papadopoulos, “Functional integrals in Brownian motion,” Journal of Physics, Ser. 2,A. 1, No. 4 (1968).Google Scholar
  6. 6.
    R. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill (1965).Google Scholar
  7. 7.
    I. M. Gel'fand and A. I. Yaglom, Usp. Matem. Nauk,11, No. 1, 6 (1956).Google Scholar
  8. 8.
    A. A. Beilinson, Dokl. Akad. Nauk SSSR,128, No. 5 (1959).Google Scholar
  9. 9.
    M. Katz, Probability and Related Problems in Physics [Russian translation], Mir, Moscow (1965).Google Scholar
  10. 10.
    L. de la Pena-Auerbach, E. Braun, L. S. Garcia Colin, Journal of Mathematical Physics,9, No. 5 (1968).Google Scholar
  11. 11.
    L. F. Favella, Ann. Inst. Henry Poincaré,7, No. 1 (1967).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1973

Authors and Affiliations

  • A. I. Yablonskii

There are no affiliations available

Personalised recommendations