Advertisement

Radiophysics and Quantum Electronics

, Volume 13, Issue 5, pp 489–521 | Cite as

Parametric amplification and generation of light

  • M. M. Sushchik
  • V. M. Fortus
  • G. I. Freidman
Article

Keywords

Parametric Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics [in Russian], Izd. VINITI, Moscow (1964).Google Scholar
  2. 2.
    V. M. Fain and Ya. I. Khanin, Quantum Radio Physics [in Russian], Sovetskoe Radio, Moscow (1965).Google Scholar
  3. 3.
    N. Bloembergen, Nonlinear Optics [Russian translation], Mir, Moscow (1966).Google Scholar
  4. 4.
    N. Bloembergen, “Stimulated Raman light scattering,” Usp. Fiz. Nauk,97, No. 2, 307 (1969).Google Scholar
  5. 5.
    G. L. Gurevich and Yu. G. Khronopulo, “On the problem of resonance parametric interaction of powerful fields at optical frequencies,” Zh. Éksperim. i Teor. Fiz.,51, 1499 (1966).Google Scholar
  6. 6.
    J. A. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett.,8, No. 1, 19 (1962).Google Scholar
  7. 7.
    P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett.,8, No. 1, 21 (1962).Google Scholar
  8. 8.
    R. W. Terhune, P. D. Maker, and C. M. Savage, “Observation of saturation effects in optical harmonic generation,” Appl. Phys. Lett.,2, 54 (1963).Google Scholar
  9. 9.
    G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and C. M. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett.,5, No. 11, 234 (1964).Google Scholar
  10. 10.
    J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “The nonlinear optical properties of Ba2NaNb5O15,” Appl. Phys. Lett.,11, No. 9, 269 (1967).Google Scholar
  11. 11.
    K. F. Hulme, O. Jones, P. H. Davies, and M. V. Hobden, “Synthetic proustite (Ag3AsS3): a new crystal for optical mixing,” Appl. Phys. Lett.,10 No. 4, 133 (1967).Google Scholar
  12. 12.
    C. K. N. Patel, “Parametric amplification in the far infrared,” Appl. Phys. Lett.,9, No. 9, 332 (1966).Google Scholar
  13. 13.
    G. Nath and S. Haussühl, “Large nonlinear optical coefficients in LiIO3,” Appl. Phys. Lett.,14, No. 5, 154 (1969).Google Scholar
  14. 14.
    S. Akhmanov, A. Kovrigin, V. Dmitriev, and R. Khokhlov, Nonlinear Effects at Multiples of Laser Frequencies, Physics of Quantum Electronics Conference [Russian translation], McGraw-Hill, New York (1965); S. A. Akhmanov, A. I. Kovrigin, V. A. Kolosov, A. S. Piskarkas, V. V. Radeev, and R. V. Khokhlov, “Tunable optical parametric oscillator based on a KDP crystal,” Pis'ma v Zh. Éksperim. i Teor. Fiz.,3, No. 6, 372 (1966).Google Scholar
  15. 15.
    J. A. Giordmaine and R. C. Miller, Optical Parametric Oscillation in LiNbO3, Physics of Quantum Electronics Conference, McGraw-Hill, New York (1965).Google Scholar
  16. 16.
    S. A. Akhmanov and R. V. Khokhlov, “Optical parametric amplifiers and oscillators,” Usp. Fiz. Nauk,88, No. 3, 439 (1966).Google Scholar
  17. 17.
    S. A. Akhmanov, Yu. V. Grigor'ev, V. G. Dmitriev, V. V. Fadeev, and R. V. Khokhlov, On the Theory of Optical Parametric Oscillators, Nonlinear Optics, Transactions of the Second All-Union Symposium on Nonlinear Optics (1965) [in Russian], Nauka, Novosibirsk (1968); V. V. Fadeev, Dissertation [in Russian], MGU (1967).Google Scholar
  18. 18.
    S. A. Akhmanov and R. V. Khokhlov, “Nonlinear optics and problems of converting the frequency of coherent radiation,” Radiotekhnika i Elektronika,12, No. 11, 2052 (1967).Google Scholar
  19. 19.
    J. Falk and J. E. Murray, “Single-cavity noncollinear optical parametric oscillation,” Appl. Phys. Lett.,14, No. 8, 245 (1969).Google Scholar
  20. 20.
    A. S. Piskarskas, Pulsed Optical Parametric Oscillators, Transactions of the First Vavilov Conference on Nonlinear Optics [in Russian], NGU, Novosibirsk (1969).Google Scholar
  21. 21.
    E. V. Krivoshchekov and S. I. Marennikov, Variation of the Radiation Frequency of an Optical Parametric Oscillator by Means of the Nonlinear Electrooptical Effect (Transactions of the Second All-Union Symposium on Nonlinear Optics, 1966) Nonlinear Optics, [in Russian], Nauka, Novosibirsk (1968); G. V. Krivoshchekov, S. V. Kruglov, S. I. Marennikov, and V. N. Polivanov, “Variation of the radiation wavelength of an optical parametric oscillator using an external electric field,” Pis'ma v Zh. Éksperim. i Teor. Fiz.,7, 84 (1968).Google Scholar
  22. 22.
    S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.,18, No. 18, 732 (1967).Google Scholar
  23. 23.
    D. Magde and H. Mahr, “Study of spontaneous parametric interaction in ammonium dihydrogen phosphate,” Phys. Rev. Lett.,18, No. 21, 905 (1967).Google Scholar
  24. 24.
    D. N. Klyshko, “Coherent decay of photons in a nonlinear medium,” Pis'ma v Zh. Éksperim. i Teor. Fiz.,6, No. 1, 490 (1967); S. A. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and O. N. Chunaev, “Quantum noise in optical parametric oscillators,” Pis'ma v Zh. Éksperim. i Teor. Fiz.,6, 575 (1967).Google Scholar
  25. 25.
    S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “On the theory of generation of optical harmonics in convergent beams,” Zh. Éksperim. i Teor. Fiz.,50, No. 2, 474 (1966); S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and the space—time analogy in nonlinear optics,” Zh. Éksperim. i Teor. Fiz.,55, No. 4, 1430 (1968).Google Scholar
  26. 26.
    S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, P. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE,QE-4, No. 10, 598 (1968).Google Scholar
  27. 27.
    R. Kingston, “Parametric amplification and oscillations at optical frequencies,” Proc. IRE,50, No. 4, 472 (1962).Google Scholar
  28. 28.
    N. Kroll, “Parametric amplification in spatially extended media and application to the design of tunable oscillators at optical frequencies,” Phys. Rev.,127, No. 4, 1207 (1962).Google Scholar
  29. 29.
    S. A. Akhmanov and R. V. Khokhlov, “On a certain possibility of the amplification of light waves,” Zh. Éksperim. i Teor. Fiz.,43, No. 7, 351 (1962).Google Scholar
  30. 30.
    A. Siegman, “Nonlinear optical effects: an optical power limiter,” Appl. Optics,1, No. 6, 739 (1962).Google Scholar
  31. 31.
    G. I. Freidman, On Parametrically Coupled Oscillations in Optical-Range Cavity Resonators (Transactions of the Second All-Union Symposium on Nonlinear Optics, 1966), Nonlinear Optics [in Russian], Nauka, Novosibirsk (1968).Google Scholar
  32. 32.
    G. D. Boyd and A. Ashkin, “Theory of parametric oscillator threshold with single-mode optical masers and observation of amplification in LiNbO3,” Phys. Rev.,146, No. 1, 187 (1966).Google Scholar
  33. 33.
    A. I. Kovrigin and R. L. Byer, “Stability factor for optical parametric oscillators,” IEEE,QE-5, 7 (1969).Google Scholar
  34. 34.
    A. G. Akhmanov, S. A. Akhmanov, P. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, and A. P. Sukhorukov, “Parametric interaction in optics and tunable light oscillators,” IEEE,QE-4, No. 11, 828 (1968).Google Scholar
  35. 35.
    Yu. N. Belyaev, A. M. Kisilev, and G. I. Freidman, “Investigation of a parametric oscillator with feedback with respect to just one of the waves,” Pis'ma v Zh. Éksperim. i Teor. Fiz.,9, No. 8, 441 (1969).Google Scholar
  36. 36.
    G. I. Freidman, Interaction of Parametrically Amplified Waves with Powerful Pumping-Radiation Beams, Transactions of the First Vavilov Conference on Nonlinear Optics [in Russian], NGU, Novosibirsk (1969).Google Scholar
  37. 37.
    A. I. Kovrigin, P. V. Nikles, A. S. Piskarskas, and A. I. Kholodnykh, Traveling-Wave Optical Parametric Oscillator, Abstracts of Papers Read at the Fourth All-Union Symposium on Nonlinear Optics [in Russian], Kiev (1968).Google Scholar
  38. 38.
    R. V. Khokhlov, “On the propagation of waves in nonlinear dispersive lines,” Radiotekhnika i Élektronika,6, No. 6, 1116 (1961).Google Scholar
  39. 39.
    J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev.,127, No. 6, 1918 (1962).Google Scholar
  40. 40.
    É. V. Pogorelova and R. V. Khokhlov, “On nonlinear theory of a parametric traveling-wave amplifier,” Vestnik MGU, Ser. III, No. 5, 62 (1962).Google Scholar
  41. 41.
    V. M. Fortus and G. I. Freidman, On the Efficiency of a Distributed Parametric Oscillator with Feedback with Respect to One of the Interacting Waves, Abstracts of Papers Read at the Third All-Union Symposium on Nonlinear Optics [in Russian], Erevan (1967).Google Scholar
  42. 42.
    V. M. Fortus and G. I. Freidman, “On parametric traveling-wave oscillators,” Izv. VUZ, Radiofiz.,12, No. 6, 850 (1969).Google Scholar
  43. 43.
    J. E. Bjorkholm, Efficient Optical Parametric Oscillations, Proceedings of the Conference on Short Laser Pulses and Coherent Interactions, International Center for Advanced Studies, Chania, Crete, Greece (1969); IEEE,QE-5, 293 (1969).Google Scholar
  44. 44.
    Yu. V. Grigor'ev, The Steady-State Mode and Efficiency of the Parametric Light Oscillator for Arbitrary Interaction Coefficients, Abstracts of Papers Read at the Third All-Union Symposium on Nonlinear Optics [in Russian], Erevan (1967).Google Scholar
  45. 45.
    Yu. G. Grigor'ev, V. K. Rudenko, and R. V. Khokhlov, “On the theory of an optical parametric oscillator,” Izv. VUZ, Radiofiz.,9, No. 5, 932 (1966).Google Scholar
  46. 46.
    W. H. Louisell and A. Yariv, “Quantum fluctuations and noise in parametric processes I,” Phys. Rev.,124, No. 6, 1646 (1961); J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes II,” Phys. Rev.,129, No. 1, 481 (1963).Google Scholar
  47. 47.
    J. E. Bjorkholm, “Efficient optical parametric oscillations using doubly and singly resonant cavities,” Appl. Phys. Lett.,13, No. 12, 53 (1968).Google Scholar
  48. 48.
    L. A. Ostrovskii, “Interaction of wave packets in a nonlinear medium,” Izv. VUZ, Radiofiz.12, No. 2, 268 (1969).Google Scholar
  49. 49.
    S. A. Akhmanov and A. S. Chirkin, On the Theory of Optical Parametric Amplification for Nonmonochromatic Pumping (Transactions of the Second All-Union Symposium on Nonlinear Optics, 1966), Nonlinear Optics [in Russian], Nauka, Novosibirsk (1968).Google Scholar
  50. 50.
    S. A. Akhmanov, V. V. Baklanova, and A. S. Chirkin, “Parametric amplification for multimode pumping,” Izv. VUZ, Radiofiz.,10, No. 1, 146 (1967).Google Scholar
  51. 51.
    G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys.,39, No. 8, 3597 (1968).Google Scholar
  52. 52.
    W. H. Glenn, “Parametric amplification of ultrashort laser pulses,” Appl. Phys. Lett.,11, No. 11, 333 (1967).Google Scholar
  53. 53.
    S. A. Akhmanov, A. I. Kovrigin, A. P. Sukhorukov, R. V. Khokhlov, and A. S. Chirkin, “Nonstationary nonlinear optical effects, and the formation of ultrashort light pulses,” Pis'ma v Zh. Éksperim. i Teor. Fiz.,7, 237 (1968).Google Scholar
  54. 54.
    M. M. Sushchik, V. M. Fortus, and G. I. Freidman, Interaction of Parametrically Coupled Waves with Pumping-Radiation Pulses, Abstracts of Papers Read at the Fourth All-Union Symposium on Nonlinear Optics [in Russian], Kiev (1968); M. M. Sushchik, V. M. Fortus, G. I. Freidman, “On ‘imprisonment’ of parametrically coupled waves by pumping-radiation pulses and beams,” Izv. VUZ, Radiofiz.,12, No. 2, 293 (1969).Google Scholar
  55. 55.
    M. M. Sushchik, V. M. Fortus, and G. I. Freidman, “On the excitation of parametrically amplified waves for their spatial capture by wave packets of pumping radiation,” Izv. VUZ, Radiofiz.,13, No. 2, 251 (1970).Google Scholar
  56. 56.
    M. M. Sushchik and G. I. Freidman, “The effect of nonuniformity of the amplitude and phase distribution of the pumping radiation on spatial capture of parametrically amplified waves,” Izv. VUZ, Radiofiz. (in press).Google Scholar
  57. 57.
    G. I. Freidman, “One-wave approximation for parametrically amplified waves,” Zh. Éksperim. i Teor. Fiz.,58, No. 6 (1970).Google Scholar
  58. 58.
    D. F. Mikheev, A. P. Sukhrokov, and A. K. Shchednova, Zh. Eksperim. i Teor. Fiz. (in press).Google Scholar
  59. 59.
    P. G. Kruykov and V. S. Letokhov, “Propagation of a light pulse in a resonance-amplifying (resonance-absorptive) medium,” Usp. Fiz. Nauk,99, No. 2, 169 (1969).Google Scholar
  60. 60.
    D. L. Bobroff, “Coupled-modes analysis of the phonon-phonon parametric backward-wave oscillator,” J. Appl. Phys.,36, No. 5, 1760 (1965).Google Scholar
  61. 61.
    Yu. A. Kravtsov, “Geometric-optics approximation in the general case of inhomogeneous and nonstationary media having frequency and space dispersion,” Zh. Éksperim. i Teor. Fiz.,55, No. 10, 1470 (1968).Google Scholar
  62. 62.
    M. M. Sushchik and G. I. Freidman, On Self-Excitation of Parametrically Coupled Oscillations for a Finite Width of the Angular Spectrum of the Pumping Beam and Certain Peculiarities of the Frequency Conversion of Light Beams, Abstracts of Papers Read at the Third All-Union Symposium on Nonlinear Optics [in Russian], Erevan (1967).Google Scholar
  63. 63.
    M. M. Sushchik and G. I. Freidman, “On optimal focusing of pumping for excitation of parametrically coupled oscillations in cavity resonators,” Izv. VUZ, Radiofiz. (in press).Google Scholar
  64. 64.
    V. S. Averbakh, S. N. Vlasov, and V. I. Taranov, “Open cavity resonators having an arbitrarily situated iris,” Zh. Tekh. Fiz.,36, 497 (1966).Google Scholar
  65. 65.
    S. E. Harris, “Threshold of phase-locked parametric oscillators,” IEEE,QE-3, No. 5, 205 (1967).Google Scholar
  66. 66.
    G. I. Freidman, On Self-Excitation of Parametrically Coupled Oscillations in Cavity Resonators Operating in the Optical Range under Multimode Pumping, Abstracts of Papers Read at the Third All-Union Symposium on Nonlinear Optics [in Russian], Erevan (1967); G. I. Freidman, “On self-excitation of parametrically coupled oscillations in cavity resonators operating in the optical range under nonmonochromatic pumping,” Izv. VUZ, Radiofiz.11, No. 9, 1345 (1968).Google Scholar
  67. 67.
    E. M. Fortus and G. I. Freidman, On Parametrically Coupled Oscillations in Cavity Resonators under Pumping by a Periodic Sequence of Pulses, Abstracts of Papers Read at the Fourth All-Union Symposium on Nonlinear Optics [in Russian], Kiev (1968); V. M. Fortus and G. I. Freidman, “On mode locking in optical parametric oscillators,” Izv. VUZ, Radiofiz.12, No. 12, 1788 (1969).Google Scholar
  68. 68.
    S. E. Harris, “Threshold of multimode parametric oscillators,” IEEE,QE-2, No. 10, 701 (1966).Google Scholar
  69. 69.
    D. L. Weinberg, “Tunable optical parametric amplifiers and oscillators,” Laser Focus,5, No. 7, 35 (1969).Google Scholar
  70. 70.
    A. I. Kovrigin, Optical Parametric Oscillators with Quasicontinuous-Wave and Continuous-Wave Operation, Transactions of the First Vavilov Conference on Nonlinear Optics [in Russian], NGU, Novosibirsk (1969).Google Scholar
  71. 71.
    R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “Continuous-wave optical parametric oscillations in Ba2NaNb5O15,” Appl. Phys. Lett.,12, No. 9, 308 (1968).Google Scholar
  72. 72.
    R. L. Byer, A. I. Kovrigin, and J. F. Young, “A CW ring cavity parametric oscillator,” IEEE,QE-5, No. 10, (1969) 1969 IEEE Conference on Laser Engineering and Applications, Washington, D. C.Google Scholar
  73. 73.
    R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillators,” Appl. Phys. Lett.13, No. 3, 109 (1968).Google Scholar
  74. 74.
    1969 IEEE Conference on Laser Engineering and Applications, Washington, D. C.Google Scholar
  75. 75.
    L. B. Kreuzer, “High-efficiency optical parametric oscillation and power limiting in LiNbO3,” Appl. Phys. Lett.,13, No. 2, 57 (1968).Google Scholar
  76. 76.
    J. E. Bjorkholm “Some spectral properties of doubly and singly resonant pulsed optical parametric oscillations,” Appl. Phys. Lett.,13, No. 12, 399 (1968).Google Scholar
  77. 77.
    Yu. N. Belyaev, A. M. Kiselev, and G. I. Freidman, “Parametric traveling-wave optical oscillator with two interaction regions,” Izv. VUZ, Radiofiz. (in press).Google Scholar
  78. 78.
    S. E. Harris, “Method to lock an optical parametric oscillator to an atomic transition,” Appl. Phys. Lett.,14, 335 (1969).Google Scholar
  79. 79.
    L. B. Kreuzer, “Single-mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett.,15, 263 (1969).Google Scholar
  80. 80.
    E. O. Ammann, M. K. Oshman, J. D. Foster, and J. M. Yarborough, “Repetitively pumped optical parametric oscillator at 2.13 μ,” Appl. Phys. Lett.,15, No. 5, 131 (1969).Google Scholar
  81. 81.
    M. K. Oshman and S. E. Harris, “Theory of optical parametric oscillations internal to the laser cavity,” IEEE,QE-4, No. 8, 491 (1968).Google Scholar
  82. 82.
    C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.,171, 1058 (1968).Google Scholar
  83. 83.
    S. K. Kurtz and J. A. Giordamaine, “Stimulated Raman scattering by polaritons,” Phys. Rev. Lett.,22, 192 (1969).Google Scholar
  84. 84.
    J. M. Yarborough, S. S. Sussman, H. E. Purhoff, P. H. Pantell, and B. C. Johnson, “Efficient tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.,15, 102 (1969).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1973

Authors and Affiliations

  • M. M. Sushchik
  • V. M. Fortus
  • G. I. Freidman

There are no affiliations available

Personalised recommendations