Skip to main content
Log in

Deep convective cloud scales and direct adjustment of upper troposphere moisture in TWP environment

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A conceptually simple model based on cloud geometry is proposed to explain direct adjustment of moisture by convective clouds. The model is tested using deep convective cloud geometry and changes in upper tropospheric humidity in the Tropical Western Pacific (TWP) during TOGACOARE. The model and the data emphasize the importance of clouds larger than a General Circulation Model (GCM) grid box in drying the upper topospheric environment and in sub grid scale clouds in moistening the upper topospheric environment. The convective cloud sizes and changes in moisture are shown to be linked to precipitation rates. The change from clouds that moisten to clouds that dry the environment occurs when the average cloud size in 6.8×104 km2 or rain rate of 2.1 mm hr−1. In a study of moisture change in the sub cloud layer due to convection, Barnes and Garstang (1982) demonstrated that precipitation rates greater than 2 mm hr−1 resulted in drying. The critical rain rates above which environmental drying occurs is similar for both upper tropospheric regions and the sub cloud. The similarity of the rain rates indicates that the model concepts maybe used to explain direct adjustment of moisture under a variety of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., Schubert, W.H., 1974: Interaction of a Cumulus Cloud ensemble with large scale environment, Part I.J. Atmos. Sci.,31, 674–701.

    Google Scholar 

  • Arakawa, A., 1993: Closure Assumptions in the cumulus parameterization problem. In: Emanuel, K. A., Raymond, D. J. (eds.)The Representation of Cumulus Convection in Numerical Models. 24. Boston, MA: American Meteorological Society, pp. 246.

    Google Scholar 

  • Barnes, G., Garstang, M., 1982: Subcloud layer energetics of precipitating convection.Mon. Wea. Rev.,110, 102–117.

    Google Scholar 

  • Betts, A. K., 1973: Non Precipitating cumulus convection and its parameterization.Quart. J. Roy. Meteor. Soc.,99, 178–196.

    Google Scholar 

  • Betts, A. K., Miller, M. J., 1986: A new convective adjustment scheme I. Observational and theoretical basis.Quart. J. Roy. Meteor. Soc.,112, 677–691.

    Google Scholar 

  • Bretherton, C. S., Smolarkiewicz, P. K., 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds.J. Atmos. Sci.,46, 740–759.

    Google Scholar 

  • Chalan, R. F., Joseph, J. H., 1989: Fractal statistics of cloud fields.Mon. Wea. Rev.,117, 261–272.

    Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large scale models.J. Atmos. Sci.,48, 2313–2335.

    Google Scholar 

  • Emanuel, K. A., 1994:Atmospheric Convection. New York: Oxford University Press.

    Google Scholar 

  • Frank, W.M., 1983: The cumulus parameterization problem.Mon. Wea. Rev.,111, 1859–1871.

    Google Scholar 

  • Frank, W. M., Cohen, M., 1987: Simulation of tropical convection layers. Part I: A cumulus parameterization.J. Atmos. Sci.,44, 3464–3478.

    Google Scholar 

  • Fritsch, J. M., Chappell, C. F., 1980: Numerical prediction of convectively driven mesoscale pressure systems: Part I: Convective parameterization schemes.J. Atmos. Sci.,37, 1722–1733.

    Google Scholar 

  • Fu, R., Del-Genio, A. D., Rossow, W. B., 1990: Behaviour of deep convective clouds in the tropical pacific deduced from ISCCP radiances.J. Climate,3, 1129–1153.

    Google Scholar 

  • Gill, A. E., 1982:Atmosphere-Ocean Dynamics. (International Geophysics Series. 30). San Diego: Academic Press.

    Google Scholar 

  • Gray, W. M., 1973: Cumulus convection and larger scale circulations. I: Broadscale and mesoscale considerations.Mon. Wea. Rev.,101, 839–855.

    Google Scholar 

  • Jackson, D. L., Stephens, G. L., 1995: A study of SSM/I-derived columnar water vapor over the global oceans.J. Climate,8, 2025–2038.

    Google Scholar 

  • Johnson, R. H., 1977: The effects of cloud detrainment on the diagnosed properties of cumulus populations.J. Atmos. Sci.,34, 359–366.

    Google Scholar 

  • Knupp, K. R., Cotton, W. R., 1985: Convective cloud downdraft structure: an interpretive survey.Rev. Geophys.,23, 183–215.

    Google Scholar 

  • Liu, G., Curry, J. A., Sheu, R.-S., 1995: Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data.J. Geophys. Res.,100, 13811–13826.

    Google Scholar 

  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large scale environment. Part III: Semiprognostic test of the Arkawa-Schubert cumulus parameterizationJ. Atmos. Sci.,39, 88–103.

    Google Scholar 

  • Machado, L. A. T., Rossow, W. B., 1993: Structure, characteristics and radiative properties of tropical cloud clusters.Mon. Wea. Rev.,121, 3234–3260.

    Google Scholar 

  • Mapes, B., Houze, B. E., 1993: Cloud clusters and super clusters over the Oceanic warm pool.Mon. Wea. Rev.,121, 1398–1415.

    Google Scholar 

  • Meteorological-Research-Institute, 1993: GMS-4 Infrared Images over the TOGA-COARE Region. Tokyo, Japan, Japan meteorological Agency and Science and Technology Agency. 8.

  • Ooyama, V. K., 1971: A theory on parameterization of cumulus convection.J. Meteor. Soc. Japan,49, 744–756.

    Google Scholar 

  • Parsons, D., Dabberdt, W., Coloe, H., Hock, T., Martin, C., Barrett, A.-L., Miller, E., Spowart, M., Howard, M., Ecklund, W., Carter, D., Gage, K., Wilson, J., 1994: The integrated sounding system: description and orelimnary observations from TOGA-COARE.Bull. Amer. Meteor. Soc.,75, 553–567.

    Google Scholar 

  • Perry, K. D., Hobbs, P. V., 1996: Influences of isolated cumulus clouds on the humidity of their surroundings.J. Atmos. Sci.,53, 159–174.

    Google Scholar 

  • Raga, G. B., Jensen, J. B., Baker B. M., 1990: Characteristics of cumulus bands of clouds off the coast of Hawaii.J. Atmos. Sci.,47, 338–355.

    Google Scholar 

  • Raymond, D. J., 1993: Observational constraints on Cumulus Parameterizations. In: Emanuel, K. A., Raymond, D. J. (eds.)The Representation of Cumulus Convection in Numerical Models. 24. Boston, MA: American Meteorological Society, pp. 17–28.

    Google Scholar 

  • Raymond, D. J., Blyth, A. M., 1986: A stochastic mixing mixing model for non precipitating cumulus clouds.J. Atmos. Sci.,43, 2708–2718.

    Google Scholar 

  • Simpson, J., Van-Helvoirt, G., Mcumber, M., 1982: Three dimensional simulations of cumulus congestus clouds on GATE day 261.J. Atmos. Sci.,39, 126–145.

    Google Scholar 

  • Sheu, R.-S., Liu, G., 1995: Atmospheric humidity variations associated with westerly wind bursts during Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE).J. Geophys. Res.,100, 25,759–25,768.

    Google Scholar 

  • Walcek, C. J., Hu, Q., Iacovazzi, B., 1994: Cumulus clouds parameterized as detraining plumes. AMS 10th Conference on Numerical Weather Prediction, Portland, Oregon, American Meteorological Society, pp. 77–78.

  • Weller, R. A., Anderson, S. P., 1996: Surface meteorology and air-sea fluxes in the western equatorialPacific warm pool during the TOGA Coupled Ocean-Atmosphere Response Experiment.J. Climate,9, 1959–1990.

    Google Scholar 

  • Yanai, M., Johnson, R. H., 1993: Impacts of cumulus convection on thermodynamic fields.Meteorological Monographs,24, 39–62.

    Google Scholar 

  • Yanai, M., Esbensen, S., Chu, J. H., 1973: Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets.J. Atmos. Sci.,30, 611–627.

    Google Scholar 

  • Walcek, C. J., Hu, Q., Iacovazzi, B., 1994: Cumulus clouds parameterized as detraining pulmes.AMS 10th Conference on Numerical Weather Prediction, Portland, Oregon, American Meteorological Society, pp. 77–78.

    Google Scholar 

  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance.J. Climate Appl. Meteor.,8, 799–814.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barr-Kumarakulasinghe, S.A., Lwiza, K.M.M. Deep convective cloud scales and direct adjustment of upper troposphere moisture in TWP environment. Meteorl. Atmos. Phys. 66, 35–50 (1998). https://doi.org/10.1007/BF01030447

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030447

Keywords

Navigation